Curriculum for B.Tech. in Information Technology

(Applicable from the academic session 2018-2019)

Department of Information Technology

Government College of Engineering & Ceramic Technology (An Autonomous Institution under MAKUT) 73, A.C Banerjee Lane Kolkata-700010

Definition of Credit:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credits

MOOCs for B. Tech Honours:

Additional 20 credits are to be acquired through MOOCs for obtaining **B. Tech. with Honours.** Guidelines for completing MOOCs (Courses of 8-12 weeks' duration): -

In 1st year: 8 credits In 2nd year: 4 credits In 3rd year: 4 credits In 4th year: 4 credits

In the first year of study, students have to earn a total of 8 credit points, taking ONE course from Science and Engineering Group and ONE course from Humanities Group.

For the subsequent three years of study, students have to earn a total of 12 credit points by successfully completing one course in each year of study.

COURSE STRUCTURE

1 st SEMESTER											
	Mandatory Induction Program- 3 Weeks duration										
SL.	TYPE OF	COURSE	COUDSE TITLE	HOURS PER WEEK							
NO.	COURSE	CODE	COURSE IIILE	Lecture	Tutorial	Practical	Credit				
THE	ORY										
01	Basic Science course	BS(CS/IT) 101	Mathematics – I	3	0	0	3				
02	Basic Science course	BS(CS/IT) 102	Physics	3	1	0	4				
03	Engineering Science Course	ES(CS/IT) 101	G(CS/IT)Basic Electrical31Engineering3		1	0	4				
SESS	SIONAL/PRACT	ГICAL									
01	Basic Science course	BSL(CS/IT) 103	Physics Laboratory	0	0	3	1.5				
02	Engineering Science Course	ESL(CS/IT) 102	Basic Electrical Engineering Laboratory	0	0	2	1				
03	Engineering Science Course	ESL(CS/IT) 103	Engineering Graphics & Design	1	0	4	3				
04		CLA(IT)-1	Comprehensive Laboratory Assessment	-	-	-	1				
тот	AL			10	2	9	17.5				
			2 nd SEMESTER	k							
SL.	TYPE OF	COURSE		но	URS PER W	/EEK					
NO.	COURSE	CODE	COURSE IIILE	Lecture	Tutorial	Practical	Credit				
THE	ORY										
01	Basic Science course	BS(CS/IT) 204	Chemistry	3	0	0	3				
02	Basic Science course	BS(CS/IT) 205	Mathematics – II	3	1	0	4				
03	Engineering Science Course	ES(CS/IT) 204	Programming for Problem solving	3	0	0	3				
04	Humanities & Social	HS(CT/IT/ CS)201	English	2	0	0	2				

	Sciences including Management										
SESSIONAL/PRACTICAL											
01	Basic Science course	BSL(CS/IT) 206	Chemistry Laboratory		0		0	3		1.5	
02	Engineering Science Course	ESL(CS/IT) 205	Programming Problem solvin Laboratory	for ng	0		0	4		2	
03	Engineering Science Course	ESL(CS/IT) 206	Workshop /Manufacturin Practices	g	1		0	4		3	
04	Humanities & Social Sciences including Management	HS(CT/IT/C S)202	Language Lab		0		0	2		1	
05		CLA(IT)-2	Comprehensiv Laboratory Assessment	'e	-		-	-		1	
TOT	AL				12		1	13		20.5	
	3 rd SEMESTER										
SL.							CONT	ACT			
NO.	PAPER CODE	PAPER NA	AME	L	Т	P	HRs./V	VEEK	CF	REDIT	
NO. THE	ORY	PAPER NA	AME	L	T	P	HRs./V	VEEK	CF	REDIT	
NO. THE 01	ORY BS(CS/IT)307	PAPER NA Mathematic	AME cs- III	L 3	T 0	P 0	HRs./V	VEEK	CF	REDIT	
NO. THE 01 02	PAPER CODE ORY BS(CS/IT)307 ES(CS/IT)307	PAPER NA Mathematic	AME cs- III ctronics	L 3 3	T 0 0	P 0 0	3 3	VEEK	CF 3 3	REDIT	
NO. THE 01 02 03	PAPER CODE ORY BS(CS/IT)307 ES(CS/IT)307 PC(CS/IT)301	PAPER NA Mathematic Digital Elec Computer C	AME es- III etronics Organization	L 3 3 3	T 0 0 1	P 0 0 0	3 3 4	VEEK	CF 3 3 4	REDIT	
NO. THE 01 02 03 04	PAPER CODE ORY BS(CS/IT)307 ES(CS/IT)307 PC(CS/IT)301 PC(CS/IT)302	PAPER NA Mathematic Digital Elec Computer C Data structu Algorithms	AME es- III etronics Drganization ure &	L 3 3 3 3 3	T 0 0 1 0	P 0 0 0 0 0 0	3 3 4 3	VEEK	CF 3 3 4 3	REDIT	
NO. THE 01 02 03 04 05	PAPER CODE ORY BS(CS/IT)307 ES(CS/IT)307 PC(CS/IT)301 PC(CS/IT)302 HS(CS/IT)303	PAPER NA Mathematic Digital Elec Computer O Data structu Algorithms Economics	AME cs- III ctronics Drganization ure & for Engineers	L 3 3 3 3 3 3	T 0 1 0 0	P 0 0 0 0 0 0	3 3 4 3 3	VEEK	CF 3 3 4 3 3	REDIT	
NO. THE 01 02 03 04 05 SESS	PAPER CODE ORY BS(CS/IT)307 ES(CS/IT)307 PC(CS/IT)301 PC(CS/IT)302 HS(CS/IT)303 SIONAL/PRACT	PAPER NA Mathematic Digital Elec Computer C Data structu Algorithms Economics	AME es- III etronics Organization ure & for Engineers	L 3 3 3 3 3 3	T 0 0 1 0 0	P 0 0 0 0 0	3 3 4 3 3	VEEK	CF 3 3 4 3 3		
NO. THE 01 02 03 04 05 SESS 01	PAPER CODE ORY BS(CS/IT)307 ES(CS/IT)307 PC(CS/IT)301 PC(CS/IT)302 HS(CS/IT)303 SIONAL/PRACT ESL(CS/IT)308	PAPER NA Mathematic Digital Elec Computer C Data structu Algorithms Economics FICAL B Digital Elec	AME es- III etronics Drganization ure & for Engineers etronics Lab	L 3 3 3 3 3 0	T 0 0 1 0 0 0 0 0	P 0 0 0 0 0 3	3 3 4 3 3 3	VEEK	CF 3 3 4 3 3		
NO. THE 01 02 03 04 05 SESS 01 02	PAPER CODE ORY BS(CS/IT)307 ES(CS/IT)307 PC(CS/IT)301 PC(CS/IT)302 HS(CS/IT)303 SIONAL/PRACT ESL(CS/IT)308 PCL(CS/IT)303	PAPER NA Mathematic Digital Elec Computer C Data structu Algorithms Economics FICAL Digital Elec Computer C Lab	AME cs- III ctronics Drganization ure & for Engineers ctronics Lab Drganization	L 3 3 3 3 3 0 0	T 0 0 1 0 0 0 0 0 0 0 0	P 0 0 0 0 0 0 3 3 3	3 3 4 3 3 3 3 3		CF 3 3 4 3 1.5 1.5		

04	PCL(CS/IT)305	IT Workshop (python/matlab)	0	0	3	3	1.5
05	CLA(IT)-3	Comprehensive Laboratory Assessment	0	0	0	0	1
тот	AL		15	1	12	28	23
		4 th SEMES	STER			·	
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRs./WEEK	CREDIT
THE	ORY						
01	BS(CS/IT)408	Discrete Mathematics	3	1	0	4	4
02	ES(CS/IT)409	Communication Engineering	3	0	0	3	3
03	PC(CS/IT)406	Design & Analysis of Algorithm	3	0	0	3	3
04	PC(CS/IT)407	Formal Language and Automata Theory	3	1	0	4	4
05	PC(CS/IT)408	Computer Architecture	3	1	0	4	4
SESS	SIONAL/PRACTI	CAL					
01	ESL(CS/IT)410	Communication Engineering Lab	0	0	3	3	1.5
02	PCL(CS/IT)409	Algorithm Lab	0	0	3	3	1.5
03	PCL(CS/IT)410	Programming Lab using C++	0	0	3	3	1.5
04	CLA(IT)-3	Comprehensive Laboratory Assessment	0	0	0	0	1
MAN	DATORY COUR	RSE					
01	MC(CS/IT)401	Environmental Sciences	2	0	0	2	0
тот	AL		17	3	9	29	23.5
		5 th SEME	STER				
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRs./WEEK	CREDIT
THE	ORY		·				
01	PC(CS/IT)511	Operating Systems	3	1	0	4	4
02	PC(CS/IT)512	Database Management System	3	1	0	4	4

03	PC(CS/IT)513	Object Oriented Programming	3	1	0	4	4			
04	PEC(IT)501	Elective-I	3	0	0	3	3			
05	MC(CS/IT)502	Constitution of India/ (Essence of Indian Traditional Knowledge)	2	0	0	2	0			
SESS	SIONAL/PRACTI	CAL								
01	PCL(CS/IT)514	Operating System Lab	0	0	3	3	1.5			
02	PCL(CS/IT)515	Database Management System Lab	0	0	3	3	1.5			
03	PCL(CS/IT)516	Programming Lab using Java	0	0	3	3	1.5			
03	CLA(IT)-5	Comprehensive Laboratory Assessment	0	0	0	0	1			
TOTAL			14	3	9	26	20.5			
		6 th SEME	STER							
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRs./WEEK	CREDIT			
THE	ORY									
01	PC(CS/IT)617	Computer Networks	3	1	0	4	4			
02	PC(CS/IT)618	Compiler Design	3	0	0	3	3			
03	PEC(IT)602	Elective-II	3	0	0	3	3			
04	OEC(IT/CS)601	Open Elective-I	3	0	0	3	3			
05	HS(CS/IT)604	Industrial Management (Organizational Behavior/ Finance & Accounting	3	0	0	3	3			
SESS	SESSIONAL/PRACTICAL									
	SIONAL/PRACTI	CAL								
01	DIONAL/PRACTIC	CAL Computer Network lab	0	0	3	3	1.5			
01 02	PCL(CS/IT)619 PROJ(IT)601	CAL Computer Network lab Project 1	0	0	3 6	3 6	1.5 3			
01 02 03	PCL(CS/IT)619 PROJ(IT)601 CLA(IT)-6	CAL Computer Network lab Project 1 Comprehensive Laboratory Assessment	0 0 0	0 0 0 0	3 6 0	3 6 0	1.5 3 1			

	7 th SEMESTER								
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRs./WEEK	CREDIT		
THE	ORY								
01	PEC(IT)703	Elective-III	3	0	0	3	3		
02	PEC(IT)704	Elective-IV	3	0	0	3	3		
03	OEC(IT/CS)702	Open Elective II	3	0	0	3	3		
SESS	SIONAL/PRACTIC	AL							
01	PROJ(IT)702	Project 2	0	0	12	12	6		
02	PEC(IT)704 (A/B/C/D)L	Elective-IV Lab.	0	0	3	3	1.5		
03	INDTR(IT)701	Industrial Training	0	0	0	0	1		
04	CLA(IT)-7	Comprehensive Laboratory Assessment	0	0	0	0	1		
TOT	AL		11	0	15	24	18.5		
		8 th SEMES	STER	2					
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRs./WEEK	CREDIT		
THE	ORY								
01	PEC(IT)805	Elective-V	3	0	0	3	3		
02	OEC(IT/CS)803	Open Elective-III	3	0	0	3	3		
SESS	SIONAL/PRACTIC	AL							
01	PROJ(IT)803	Project 3	0	0	16	16	8		
02	CVV(IT)802	Comprehensive Viva Voce	0	0	0	0	1		
тот	AL		6	0	16	22	15		

List of Electives (Professional and Open)

5TH SEMESTER

PEC(IT)501 A: Information Theory and Coding **B:** Computer Graphics C: Advanced Computer Architecture D: Computational Geometry

6TH SEMESTER

PEC(IT)602 A: Software Engineering B: Cryptography and Network Security C: Multimedia Systems **D**: Wireless Communication

7TH SEMESTER

PEC(IT)703

PEC(IT)704 OEC(IT/CS)702 A: Machine Learning A: Web Technology A: VLSI Design and Algorithm **B:** Distributed Systems B: Internetworking **B:** Digital Signal Processing C: Cloud Computing C: Pattern Recognition C: Management Information Sys. D: Real Time Operating Sys. D: Natural Language Processing D: Big Data Analytics

8TH SEMESTER

- **PEC(IT)805**
- A: E-Commerce **B:** Data Mining C: Mobile Communication D: Internet of Things E: Data Science

OEC(IT/CS)803

- A: Image Processing **B:** Software Project Management
- C: Social Network Analysis
- D: Quantum Computing
- E: Bioinformatics

OEC(IT/CS)601 A: Optimization Techniques **B:** Digital Communication C: Cyber Law and Security Policy D: Control System

FIRST YEAR FIRST SEMESTER

1 st SEMESTER										
	Mandatory Induction Program- 3 Weeks duration									
SL.	TYPE OF	COURSE	COUDSE TITLE	HOURS	PER WEEK	X	C I ''			
NO.	COURSE	CODE	COURSE IIILE	Lecture	Tutorial	Practical	Creuit			
THE	THEORY									
01	Basic Science course	BS(CS/IT) 101	Mathematics – I	3	0	0	3			
02	Basic Science course	BS(CS/IT) 102	Physics	3	1	0	4			
03	Engineering Science Course	ES(CS/IT) 101	Basic Electrical Engineering	3	1	0	4			
SESS	SIONAL/PRACT	FICAL								
01	Basic Science course	BSL(CS/IT) 103	Physics Laboratory	0	0	3	1.5			
02	Engineering Science Course	ESL(CS/IT) 102	Basic Electrical Engineering Laboratory	0	0	2	1			
03	Engineering Science Course	ESL(CS/IT) 103	Engineering Graphics & Design	1	0	4	3			
04		CLA(IT)-1	Comprehensive Laboratory Assessment	-	-	-	1			
тот	AL			10	2	9	17.5			

The course teacher shall assess the students for Serial Nos. 1, 2, 3 under Sessional/Practical before commencement of Semester End Examination. A student has to secure at least 50% marks in Serial Nos. 1, 2, 3 under Sessional/Practical, failing which the student would be debarred from sitting in the Semester End Examination.

A student has to secure at least 50% marks in rest of the courses (Theory papers and CLA), failing which he/she would carry backlog(s).

Name of	the course	Mathematics-I				
Course C	ode: BS(CS/IT) 101	Semester: 1st				
Duration	: 6 months	Maximum Marks: 100				
Teaching	Scheme	Examination Scheme				
Theory: 3	hrs/week	Two Mid Term Exams: 30 Marks				
Tutorial:	NIL	Assignments, Quiz etc.: 20 Marks				
Credit Po	ints: 3	Semester End Exam: 75 Marks (Two th	nird weigh	tage for		
		final reckoning i.e., 50 marks)	C	U		
Objective	2					
1.	To learn evaluation techniques of evolute	e, involute and can use concept of impro	oper integr	als.		
2.	To explain the meaning of Mean value the	neorem, Rolle's theorem and can recogn	nize when	to apply		
	L'Hospital rule.					
3.	To learn different types of matrices, cond	cept of rank, methods of matrix inversio	n and thei	r		
	applications.					
4.	To understand linear spaces, its basis and	l dimension with corresponding applica	tions in th	e field of		
-	computer science.		- 1			
5.	To learn the concept of eigen values, eig	en vectors, diagonalisation of matrices f	for unders	tanding		
Due Degr	engineering problems.					
Pre-Kequ						
1.	10+2 Mathematics			1		
Module	Content		Hours	Marks.		
1	Module 1: Calculus(Integration):		8			
	Evolutes and Involutes; Evaluation of def	inite and Improper integrals; Beta and				
	Gamma functions and their properties; Ap	plications of definite integrals to				
2	evaluate surface areas and volumes of rev	olutions.	(
2	Module 2: Calculus (Differentiation):	Coulon's and Magloumin's theorems	6			
	with remainders: Indeterminate forms and	L'Hospital's rule: Maxima and				
	minima					
3	Module 3: Matrices:		7			
	Matrices, Vectors: addition and scalar mu	ultiplication, matrix multiplication;				
	Linear systems of equations, linear Indepe	endence, rank of a matrix,				
	determinants, Cramer's Rule, inverse of a	matrix by Gauss elimination and				
	Gauss-Jordan elimination.					
4	Module 4: Vector Spaces (I):		8			
	Definition, linear dependence of vectors, l	Basis, Dimension; Linear				
	transformations (maps), Range and Kerne	l of a linear map, Rank and Nullity,				
	Inverse of a linear transformation, Rank-N	fullity theorem, composition of linear				
5	Madula 5: Voctor Spaces (II):		7			
5	Figen values Figen vectors Symmetric S	Skew-symmetric and Orthogonal	/			
	Matrices, Eigen bases Diagonalisation. Ir	mer product spaces. Gram-Schmidt				
	orthogonalization.	mer product spaces, Grain Seminat				
	orthogonalization.					

Course O	utcome:
After com	pletion of the course, a student would be able to-
CO 1	apply the concept and techniques of differential and integral calculus to determine curvature and
	evaluation of different types of improper integrals
CO 2	identify the domain of applications of mean value theorems to engineering problems
CO 3	analyze different types of matrices, concept of rank, methods of matrix inversion and their
	applications.
CO 4	describe linear spaces and evaluate its basis and dimension with corresponding applications in the
	field of computer science.
CO 5	use the concept of eigen values, eigen vectors, diagonalisation of matrices and orthogonalization in
	inner product spaces for understanding physical and engineering problems.
Learning	Resources:
1.	Reena Garg, Engineering Mathematics-I, Khanna Publishers.
2.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
3.	Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
4.	Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, NewDelhi.
5.	S.K. Mapa, Higher Algebra: Abstract and Linear, Sarat Book House Pvt.Ltd.
6.	Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
7.	Michael Greenberg, Advanced Engineering Mathematics, Pearson.
8	Hoffman and Kunze, Linear algebra, PHI.
9	Friedberg, Insel, Spence, Linear algebra, Pearson

Name of	the course	Physics
Course C	Code: BS(CS/IT) 102	Semester: 1 st
Duration	: 6 months	Maximum Marks: 100
Teaching	g Scheme	Examination Scheme
Theory: 3	hrs./week	Mid Term Exam I: 15 Marks
Tutorial:	Nil	Mid Term Exam II: 15 Marks
Practical:	Nil	Assignments, Quiz etc.: 20 Marks
Credit: 4		Semester End Exam: 75 Marks (Two third weightage for
		final reckoning i.e., 50 marks)
Objectiv	e:	
1.	The objective of the course is to provide	an exposure to - the Old Quantum Theory including the
	dual nature of radiation and particle, the	Schrodinger theory of Quantum Mechanics, the
	fundamentals of statistical description of	a system of particles, the development of the classical free
	electron theory of metals, the basic prope	erties of semiconductors and related devices.
2.	This course also provides an understandi	ng of practical problem-solving techniques for the chapters
	covered in the course.	
Pre-Requ	uisite:	
1.	Class 11 th and 12 th standard knowledge of	of Physics.
2	Class 11 th and 12 th standard knowledge of	of Mathematics.

Module	Content	Hours	Marks.
1	Quantum Mechanics: Introduction to quantum physics, Black body radiation,	14	
	Photoelectric Effect and Compton Effect and their explanation using the		
	photon concept. De Broglie hypothesis, wave particle Duality. Born's		
	interpretation of the wave function, verification of matter waves, uncertainty		
	principle, Schrodinger wave equation, particle in box, quantum harmonic		
	Oscillator, hydrogen atom		
2	Statistical Mechanics: Statistical description of a system of particles, Phase	8	
	space, Microstates and macrostates, Boltzmann's formula for the entropy,		
	Boltzmann distribution function (derivation not reqd.), Classical ideal gas,		
	guantative treatment of Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein		
3	Electronic Materials: Free electron theory of metals. Density of states and	10	
5	energy hand diagrams. Kronig-Penny model (to introduce origin of hand gan)	10	
	Energy bands in solids E-k diagram Direct and indirect band gaps. Types of		
	electronic materials: metals, semiconductors, and insulators. Density of states.		
	Occupation probability, Fermi level, Effective mass, Phonons.		
4	Semiconductors: Intrinsic and extrinsic semiconductors, Dependence of	10	
	Fermi level on carrier-concentration and temperature (equilibrium carrier		
	statistics), Carrier generation and recombination, Carrier transport: diffusion		
	and drift, p-njunction, Metal-semiconductor junction (Ohmic and Schottky),		
	Semiconductor materials of interest for optoelectronic devices.		
Course C	Dutcome:		
After con	npletion of the course, a student would be able to-		
CO 1	Recall the Old Quantum Theory including the dual nature of radiation and parti	cle. Apply	the wave
	particle duality principle for an understanding of the Uncertainty Principle of qu	uantum me	chanics.
CO 2	Analyze the Schrodinger theory of Quantum Mechanics and apply it for differe	nt potential	s.
CO 3	Develop the statistical description of a system of particles and discuss different	kinds of St	atistics.
CO 4	Discuss the successes and failure of free electron theory of metals and develop	the band th	eory of
	solids using Kronig Penny Model	.1 .*	1
CO 5	Discuss various properties of semiconductors and related devices and develop r	nathematic	al
Loorning	Pasourges:		
	S N Ghosal: Introduction to Quantum Mechanics		
2	Dr. Amal Kr. Chakraborty : Integrated Engineering Physics		
3.	Sujay Kumar Bhattacharya: Engineering Physics		
4.	Hitendra K. Malik: Engineering Physics.		
5.	J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-H	ill Inc. (19	95)
6.	B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Son	is, Inc., (20	07)
7.	S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley (2008).	-	
8	A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication	ns, Oxford	University
	Press, New York (2007)		-
9	P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall of India	(1997)	

Name o	f the course	BASIC ELECTRICAL ENGINE	ERING		
Course	Code: ES(CS/IT) 101	Semester: 1 st			
Duratio	n: 6 months	Maximum Marks: 100			
Teachin	ig Scheme	Examination Scheme			
Theory:	3 hrs./week	Mid Term Exam I: 15 Marks			
Tutorial	: 1 hr./week	Mid Term Exam II: 15 Marks			
Practica	l: Nil	Assignment & Ouiz etc.: 20 Marks			
Credit P	oints: 4	Semester End Exam: 75 Marks (Two	o third weig	htage	
for final reckoning i.e., 50 marks)			8-		
Objective	e:				
1.	Impart a basic knowledge of several ele	ctrical quantities such as current, volta	ige, power,	energy,	
	frequency etc. to the students	-			
2.	Provide the basic difference between DC	C and AC and provide basic principles	to solve DC	2	
	and AC circuits used in electrical device	es			
3	Explain the working principle, construct	ion, characteristics and applications of	transforme	r and	
	different DC and AC rotating electrical	machines			
4	Explain the working principles of differe	ent power converters and other low tens	sion switchg	gear and	
	protective devices; as well as, make the s	tudents acquainted with the calculation	s for energy		
Dere Die ere	consumption, especially for household ap	oplications			
Pre-Requ					
1.	Class 12th standard knowledge of Mathe	matics and Physics	1	1	
Module	Content		Hours	Marks.	
1	DC Circuits		8		
	Electrical circuit elements (R, L and C)), voltage and current sources,			
	Kirchoff current and voltage laws, anal	ysis of simple circuits with dc			
	excitation. Super position, Thevenin and	Norton Theorems. Time-domain			
2	AC Circuits	ts.	8		
2	Representation of sinusoidal waveform	s neak and rms values phasor	0		
	representation, real power, reactive power	r. apparent power, power factor.			
	Analysis of single-phase ac circuits consi	isting of R, L, C, RL, RC, RLC			
	combinations (series and parallel), reso	onance. Three phase balanced			
	circuits, voltage and current relations in	star and delta connections.			
3	Transformers		6		
	Magnetic materials, BH characteristics, ic	leal and practical transformer,			
	equivalent circuit, losses in transforme	ers, regulation and efficiency.			
	Auto-transformer and three-phase transf	former connections.			
4	Module 4: Electrical Machines		8		
	Generation of rotating magnetic fields,	Construction and working of a			
	L age components and afficiency, startin	ce of torque-slip characteristic.			
5	Power Converters	g and speed control of induction	6		
	DC-DC buck and boost converters duty	ratio control Single-phase and			
	three-phase voltage source inverters; sir	usoidal modulation.			
6	Electrical Installations		6		
~			-	Î.	

	Components of LT Switch goon Switch Euse Unit (SEU) MCD ELCD	
	Components of LT Switchgeat. Switch Fuse Onit (SFO), MCB, ELCB,	
	MCCB, Types of Wires and Cables, Earthing. Types of Batteries,	
	Important Characteristics for Batteries. Elementary calculations for	
	energy consumption, power factor improvement and battery backup.	
Course O	utcome:	
After com	pletion of the course, a student would be able to-	
CO 1	explain the overall electrical power system, its different parameters, components, protective	
	elements and power converters.	
CO 2	solve problems of DC and AC circuits using different methods and network theorems.	
CO 3	derive different expressions to evaluate performance of electrical machines.	
CO 4	analyze electric machines and circuits using equivalent circuits, phasor analysis etc.	
CO 5	identify different electric machines with the help of different characteristics and parameters for	
	appropriate applications.	
CO 6	calculate energy consumption in an electrical circuit.	
Learning	Resources:	
1.	D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.	
2.	D.C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.	
3.	L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.	
4.	E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.	
5.	V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.	

Name of the course		Physics Laboratory		
Course Code: BSL(CS/IT) 103		Semester: 1 st		
Duration	: 6 months	Maximum Marks: 100		
Teaching	g Scheme	Examination Scheme		
Theory:	Nil	Attendance: 10		
Tutorial:	Nil	Preparation of Lab Report: 30		
Practical:	3 hrs./week	Precision of work done: 30		
Credit Po	ints: 1.5	Presentation/ analysis of the result: 1	10	
Viva Voce: 20				
Module	Content		Hours	Marks.
1	Determination of an unknown resistance using Carey Foster Bridge		3	
2	Determination of energy band gap by four-probe method 3			
3	Determination of Planck's constant using	3		
4	Verification of Stefan's law of blackbody radiation 3			
5	Verification of Bohr's atomic orbital theory through Frank-Hertz experiment 3			
6	Determination of wavelength of light by Newton's ring method 3			
Course Outcome:				
After completion of the course, a student would be able to-				
CO1	identify different equipment and accessories as per specification needed to conduct a particular			

	experiment	
CO2	calibrate very small resistance using Carey Foster Bridge	
CO3	estimate the band gap of any semiconductor using four probe method	
CO4	estimate the temperature of an approximate black body	
CO5	apply Einstein equation of Photoelectric effect to evaluate Planck constant	
CO6	estimate the radius of curvature of a curved surface using Newton's Ring experiment	
CO7	validate Bohr's hypothesis using Frank-Hertz experiment	
CO8	develop skill to work in a team	
Learning Resources:		
Separate	manuals associated to each experiment are provided to students	

Name of the course		BASIC ELECTRICAL ENGINEER	ING LAB	
Course	Code: ESL(CS/IT) 102	Semester: 1 st		
Duratio	n: 6 months	Maximum Marks: 100		
Teachir	g Scheme	Examination Scheme		
Theory:	Nil	Attendance: 10		
Tutoria	l: Nil	Preparation of Lab Report: 30		
Practic	al: 2 hrs./week	Experimental data/ Precision of work	done: 30	
Credit I	Points: 1	Presentation/ analysis of the result: 10	0	
		Viva Voce: 20		
Module	Content		Hours	Marks.
1	 First activity: Introduction to mentioning of the do's and Don'ts. Noti performed, and instruction for writing Group formation. Students are to be inforevaluation. Introduction and uses of following instruction a) Voltmeter 	basic safety precautions and ing down list of experiments to be the laboratory reports by the students. formed about the modalities of	3	
	 b) Ammeter c) Multimeter d) Oscilloscope Demonstration of real-life resistors, cap and autotransformer. 	pacitors with color code, inductors		
3	Demonstration of cut-out sections of mac	hines: DC machine, Induction	3	
4	machine, Synchronous machine and sing	le-phase induction machine.	2	
4	Calibration of ammeter and wattmeter.		3	
5	Determination of steady state and transie	ent response of R-L, R-C and R-L-	3	
6	Determination of steady state response of	R-L and R-C and R-L-C circuit and	3	
0	calculation of impedance and power fac	tor.	5	
7	Determination of resonance frequency as parallel R-L-C circuit.	nd quality factor of series and	3	

8) Open circuit and short circuit test of a single-phase transformer	3	
) Load test of the transformer and determination of efficiency		
	and regulation		
9	Demonstration of three phase transformer connections. Voltage	3	
	and current relationship, phase shifts between the primary and		
10	Measurement of power in a three-phase unbalanced circuit by two wattmeter		
	method.		
11	Determination of Torque —Speed characteristics of separately excited DC		
10	motor.		
12	Determination of Torque speed characteristics and observation of direction		
12	reversal by change of phase sequence of connection of Induction motor.		
13	Determination of operating characteristics of Synchronous		
14	Demonstration of operation of (a) DC DC converter (b) DC AC converter		
17	(c) DC-AC converter for speed control of an Induction motor		
15	Demonstration of components of LT switchgear		
Course	Demonstration of components of D1 Switchgeta		
After cor	upletion of the course, a student would be able to-		
CO1	identify different equipment and accessories as per specification needed to conduct	a	
600	particular experiment.		
02	set up an electric wiring for household application.		
CO3	calibrate of different measuring instruments viz ammeter, voltmeter, wattmeter	•	
CO4	verify three network theorems (Thevenin, Norton and Superposition) using differen	t	
	combination of circuits.		
CO5	determine the steady & transient response of AC networks.		
CO6	determine different operating characteristics viz load characteristics of motors and g	enerators.	
CO7	estimate parameters of transformers by open circuit and short circuit tests.		
CO8	develop skill to work in a team.		
Learning	Resources:		
1	S. K. Bhattacharya and K. M. Rastogi, "Experiments in Basic Electrical Engine	ering", New	/ Age
	International (P) Limited, Publishers, 2003		
2	A. Chakrabarti, S. Debnath and C. K. Chandra, "Basic Electrical Engineering",	Tata McGra	aw Hill,
	2009		
3	D. P. Kothari and B. S. Umre, "Laboratory Manual for Electrical Machines",	I.K. Interna	tional
	Publishing House Pvt. Limited, 2017		

Name of the course	ENGINEERING GRAPHICS AND DESIGN
Course Code: ESL(CS/IT) 103	Semester: 1 ST
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 1 hr./week	Attendance: 10
Tutorial: Nil	Preparation of Lab Report: 30

Practical: 4 hrs./week		Experimental data/ Precision of work done: 30		
Credit Points: 3		Presentation/ analysis of the result:	10	
		Viva Voce: 20		
Module	Content		Hours	Marks.
1	Introduction to Engineering Drawing		2L+8P	
	Principles of Engineering Graphics and	l their significance, Drawing		
	instruments and their uses; Different t	ypes of lines and their uses;		
	Lettering; Dimensioning; Drawing standar	rds and codes; Scales: concept of		
	R.F, plain and diagonal scales.			
2	Geometrical Construction and Curves used	in Engineering Practice	1L+4P	
	Construction of polygons, conic section	ns including the rectangular		
	hyperbola (General method only); Cycloid	al curves: cycloid, epicycloid,		
	hypocycloid; Involute.			
3	Orthographic Projections of Points, Lines,	Planes	1L+4P	
	Principles of orthographic projections, conv	ventions; Projections of points;		
	Projections of lines inclined to both ref	erence planes; Projections of		
	planes like circle, polygons etc.			
4	Projections of Regular Solids		1L+ 4P	
	Projections of regular solids like cone, py	vramids, prisms etc.		
5	Sections of Right Regular Solids and Develop	oment of Surfaces Section	1L+4P	
	of solids like cylinder, prism, pyramid, co	one etc.		
	Development of surfaces of right reg	ular solids: cylinder, prism,		
	pyramid and cone.			
6	Isometric Projections		1L+4P	
	Principles of isometric projection, isom	etric scale, isometric views,		
	conventions; Isometric views of planes, s	imple and compound solids;		
	Conversion of isometric views to orthogr	aphic views and vice-versa.		
7	Overview of Computer Graphics, Customis	ation & CAD Drawing Listing the	1L+4P	
	computer technologiesthat impact on	graphical communication;		
	Demonstrating knowledge of the the	ory of CAD Software [such as:		
	The menu system, toolbars (standards, objec	t properties, draw, modify and		
	dimension), drawing area (background,	crossnairs, coordinate system),		
	line (where employed) the status her di	for any matheda of zoom of yood		
	in CAD select and erose chicate Settin	a up of the drawing page and the		
	nrinter including scale settings: Setting	g up of the drawing page and the		
	ISO and ANSI standards for acordinate	dimonsioning and toloronging:		
	Orthographic constraints Span to objects	s manually and automatically:		
	Producing drawings by using various co	ordinate input entry methods to		
	draw straight lines Applying various way	vs of drawing circles		
8	Annotations Lavering & Other Function	s	2L+8P	
	Applying dimensions to objects: Apply	ing annotations to drawings.	21-01	
	Setting up and use of lavers lavers to cr	eate drawings: Create edit and		
	use customized layers: Changing line leng	the through modifying existing		
	lines (extend/lengthen): Printing docum	ents to paper using the print		
	command; Orthographic projection tech	niques; Drawing sectional views		

	of composite right regular geometric solids and project the true shape of			
	the sectioned surface; Drawing annotation, Computer-Aided Design			
	(CAD) software modelling of parts and assemblies. Parametric and non-			
	parametric solid, surface, and wireframe models. Part editing and two-			
	dimensional documentation of models. Planar projection theory,			
	including sketching of perspective, isometric, multi view, auxiliary, and			
	section views. Spatial visualization exercises. Dimensioning guidelines,			
	tolerancing techniques; dimensioning and scale multi views of dwelling.			
9	Demonstration of a Simple Team Design Project	2L+8P		
	Geometry and topology of engineered components: creation of			
	engineering models and their presentation in standard 2D blueprint form			
	and as 3D wire frame and shaded solids; meshed topologies for			
	engineering analysis and tool-path generation for component			
	manufacture; geometric dimensioning and tolerancing; Use of solid-			
	modelling software for creating associative models at the component and			
	such as WC both sink shower etc. Applying colour coding according to			
	building drawing practice: Drawing sectional elevation showing			
	foundation to ceiling. Introduction to Building Information Modelling			
	(BIM)			
Course C	utcome:			
After completion of the course, a student would be able to-				
CO1	apply basics of Engineering Graphics standards for interpreting Engineering	Drawing		
CO2	apply features of Engineering Graphics to create working drawings			
CO3	draw and explain plan and elevation of different solid objects			
CO4	develop solid model with Computer Aided Design (CAD) software			
CO5	communicate to other engineering personnel via engineering graphics langua	ge		
Learning	Resources:			
1	Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charo	otar Publishing	g House	
2	Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphic	cs, Pearson Ec	ducation	
3	Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publicatio	n		
4	Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Sc.	itech Publishe	rs.	
5	(Corresponding set of) CAD Software Theory and User Manuals			

FIRST YEAR SECOND SEMESTER

	2 nd SEMESTER						
SL.	TYPE OF	COURSE	COUDSE TITLE	HOURS	PER WEEK	X	Caralit
NO.	COURSE	CODE	COURSE IIILE	Lecture	Tutorial	Practical	Credit
THE	ORY						
01	Basic Science course	BS(CS/IT) 204	Chemistry	3	0	0	3
02	Basic Science course	BS(CS/IT) 205	Mathematics – II	3	1	0	4
03	Engineering Science Course	ES(CS/IT) 204	Programming for Problem solving	3	0	0	3
04	Humanities & Social Sciences including Management	HS(CT/IT/ CS)201	English	2	0	0	2
SESSIONAL/PRACTICAL			1	1			
01	Basic Science course	BSL(CS/IT) 206	Chemistry Laboratory	0	0	3	1.5
02	Engineering Science Course	ESL(CS/IT) 205	Programming for Problem solving Laboratory	0	0	4	2
03	Engineering Science Course	ESL(CS/IT) 206	Workshop /Manufacturing Practices	1	0	4	3
04	Humanities & Social Sciences including Management	HS(CT/IT/ CS)202	Language Lab.	0	0	2	1
05	-	CLA(IT)-2	Comprehensive Laboratory Assessment	-	-	-	1
тот	TOTAL		12	1	13	20.5	

Name of	the course	Chemistry			
Course C	Code: BS(CS/IT) 204	Semester: 2 nd			
Duration: 6 months Maximum Marks: 100					
Teaching	Teaching Scheme Examination Scheme				
Theory:	3 hrs./week	Mid Term Exam I: 15 Marks			
Tutorial:	Nil	Mid Term Exam II: 15 Marks			
Practical:	Nil	Assignment & Ouiz etc.: 20 Marks			
Credit Po	ints: 3	Semester End Exam: 75 Marks (Two t	hird weig	ntage for	
		final reckoning i.e., 50 marks)	inia (reig	inuge ioi	
Objective	e:				
1.	The objective of the course is to provide a	in exposure to the atomic bonding, atom	ic and cry	stal	
	structure, crystalline defects and various p	properties of chemistry.	-		
2.	This course also provides an understandin	g of practical problem-solving techniqu	es for the	chapters	
	covered in the course.				
Pre-Requ	iisite:				
1.	This course also provides an understanding	g of practical problem-solving techniqu	es for the	chapters	
	covered in the course.				
Module	Content		Hours	Marks.	
1	Chemical bonding in molecules :		6		
	MO theory, Structure, bonding and energy levels of bonding and shapes of				
	many atom molecules,				
	Chemistry of coordination compounds reactivity and stability: Determination of				
	complexes, substitution reaction on square planer complexes, trans effect				
	(example and applications). Structure and bonding: VB description and its				
	limitations.				
	Elementary Crystal Field Theory: Splitting of d ⁿ configurations in octahedral,				
	square planar and tetrahedral fields, crystal field stabilization energy in weak and				
	strong fields; pairing energy. JahnTeller distortion.				
2	Spectroscopic techniques and applications	5	2		
	Principles of spectroscopy and selection r	ules. Electronic spectroscopy.			
	Fluorescence and its applications in medic	cine. Vibrational and rotational			
	spectroscopy of diatomic molecules. Appl	abaractorization tashniguas			
	Diffraction and scattering d-d transitions:	selection rules for electronic spectral			
	transitions: spectrochemical series of ligat	nds: charge transfer spectra			
	(elementary idea).				
3	Periodic properties		4		
	Effective nuclear charge, penetration of or	rbitals, variations of s, p, d and f			
	orbital energies of atoms in the periodic ta	able, electronic configurations,			
	atomic and ionic sizes, ionization energies	s, electron affinity and			
	electronegativity, polarizability, oxidation	states, coordination numbers and			
	geometries, hard soft acids and bases, mo	lecular geometries.			
4	Chemical Thermodynamics		6		
	Concept of Thermodynamic system: Defi	nition with example of diathermal			

	wall, adiabatic wall, isolated system, closed system, open system, extensive		
	property, intensive property.		
	Introduction to first law of thermodynamics: different statements, mathematical		
	form. Internal energy: Definition, Example, Characteristics, Physical		
	significance, Mathematical expression for change in internal Energy,		
	Expression for change in internal energy for ideal gas.		
	Enthalpy: Definition, Characteristics, Physical significance, Mathematical		
	expression for change in Enthalpy, Expression for change in enthalpy for ideal		
	gas.		
	Heat Capacity: Definition. Classification of Heat Capacity (Cp and CV):		
	Definition and General expression of $Cp - C_V$. Expression of $Cp - C_V$ for ideal		
	gas. Reversible and Irreversible processes: Definition. Work done in Isothermal		
	Reversible and Isothermal Irreversible process for Ideal gas.		
	Adiabatic changes: Work done in adiabatic process. Interrelation between		
	thermodynamic parameters (P V and T) slope of P-V curve in adjabatic and		
	isothermal process. Application of first law of thermodynamics to chemical		
	processes: exothermic endothermic processes law of Lavoisier and Laplace		
	Hess's law of constant heat summation. Kirchoff's law		
	2^{nd} law of thermodynamics: Statement Mathematical form of 2nd law of		
	thermodynamics (Carnot cycle) Joule Thomson and throttling processes: Joule		
	Thomson coefficient for Ideal gas Concept of inversion temperature		
	Evaluation of entrony: characteristics and expression entrony change in		
	irreversible cyclic process entropy change for irreversible isothermal expansion		
	of an ideal gas, entropy change of a mixture of gases		
	Work function and free energy: Definition characteristics physical		
	significance mathematical expression of AA and AG for ideal gas Maxwell's		
	Expression (only the derivation of 4 different forms). Gibbs Helmholtz		
	equation Condition of spontaneity and equilibrium reaction		
5	Surface and Colloid Chemistry		
5	Adsorption absorption and sorption Physical and Chemisorption Langmuir	3	
	and Freundlich isotherm Multilaver adsorption, BET isotherm and its	5	
	application to surface area measurement. Sols (reversible and irreversible)		
	emulsion and emulsifier micelle gels application of colloids qualitative idea		
	of electrokinetic phenomena Zeta potential		
6	Solid state Chemistry	3	
Ū	Introduction to stoichiometric defects (Schottky & Frenkel) and non –	5	
	stoichiometric defects (Metal excess and metal deficiency). Role of silicon		
	and germanium in the field of semiconductor.		
7	Stereochemistry	6	
,	Representations of 3 dimensional structures, structural isomers and	Ũ	
	stereoisomers configurations and symmetry and chirality enantiomers		
	diastereomers, optical activity, absolute configurations and conformational		
	analysis. Isomerism in transitional metal compounds		
8	Organic reactions and synthesis of a drug molecule	6	
5	Introduction to reactions involving substitution addition elimination	0	
	oxidation reduction cyclization and ring openings. Synthesis of a commonly		
	used drug molecule		
	used drug molecule.		

Course o	utcomes:	
After con	npletion of the course, a student would be able to-	
CO 1	describe various types of bonding and connectivity in a molecular system.	
CO 2	use various tools to analyze different linkages present in a molecular system to determine exact structure of a molecule.	
CO 3	estimate the energy change of a chemical reaction using thermodynamic parameters.	
CO 4	apply knowledge of surface phenomena and colloidal properties of solids in assessing particulate behaviour.	
CO 5	identify different imperfections in solids based on understanding of the ideal crystal structures.	
CO 6	Identify three-dimensional structures of different isomeric molecules and their participation in different chemical reactions like addition, substitution, elimination reaction etc.	
Learning Resources:		
1.	P. C. Rakshit, Physical Chemistry, Sarat Book House (7th Edition).	
2.	S. Glasston, Text Book of Physical Chemistry, Macmillan India Limited.	
3.	S. Pahari, Physical Chemistry, New Central Book Agency.	
4.	R. P. Sarkar, Inorganic Chemistry (Vol-1 & II)	
5.	J.D .Lee, Concise Inorganic Chemistry(5th Edition) Chapman & Hall	
6	I. L. Finar, (Vol-I) Organic Chemistry, Addison Wesley Longman, Inc.	
7	Physical Chemistry, Atkins, 6th Edition, Oxford Publishers.	
8	Organic Chemistry, G Mark Loudon, 4th Edition, Oxford Publishers.	
9	Basic Stereochemistry of Organic Molecules, Subrata Sengupta, Book syndicate Pvt. Ltd.	

Name of the course		Mathematics-II
Course C	Code: BS(CS/IT) 205	Semester: 2 nd
Duration: 6 months		Maximum Marks: 100
Teaching	Scheme	Examination Scheme
Theory: 3	3 hrs/week	Two Mid Term Exams: 30 Marks
Tutorial:	1 hrs/week	Assignments, Quiz etc.: 20 Marks
Credit Po	ints: 4	Semester End Exam: 75 Marks (Two third weightage for
		final reckoning i.e., 50 marks)
Objective	2:	
1.	To learn the ideas of probability and random variables, various discrete and continuous probability	
	distributions with their properties and t	heir applications in physical and engineering environment.
2.	To understand the basic ideas of statisti	cs with different characterization of a univariate and
	bivariate data set.	
3.	To learn statistical tools for analyzing of	lata samples and drawing inference on a given data set.
4.	To understand the logic and framework	of the inference of hypothesis testing.
5.	To create and interpret frequency table.	
Pre-Requ	uisite:	
1.	This course also provides an understand	ng of practical problem-solving techniques for the chapters
	covered in the course.	

Module	Content	Hours	Marks.
1	Module 1: Basic Probability:	8	
	Probability spaces, conditional probability, independence, Baye's theorem,		
	infinite sequences of Bernoulli trials ,Discrete random variables, Binomial		
	distribution, Poisson distribution, Poisson approximation to the Binomial		
	distribution, , sums of independent random variables; Expectation, variance of		
	Discrete Random variables, Moments, Chebyshev's Inequality.		
2	Module 2 : Continuous Probability Distributions:	5	
	Continuous random variables and their properties, Distribution functions and		
	densities, Normal, Exponential and Gamma densities.		
3	Module 3: Bivariate Distributions:	7	
	The Multinomial distribution, marginal distribution, bivariate expectation,		
	Variance of a sum, Correlation coefficient, Independent random variables,		
	Bivariate distributions of continuous random variable and their properties,		
	distribution of sums and quotients, Conditional densities.		
4	Module 4: Basic Statistics:	6	
	Frequency distribution, measures of Central tendency, central moments and		
	raw moments, Skewness and Kurtosis, Sampling and it's distribution,		
	population distributions, central limit theorem.		
5	Module 5: Applied Statistics:	4	
	Correlation and regression – Rank-correlation, scatter diagram, Curve fitting by		
	the method of least squares- fitting of straight lines, second degree parabolas		
	and more general curves.	(
6	Module 6: Statistical Hypothesis Testing:	6	
	lest of significance: Large sample test for single proportion, difference of		
	deviations, single mean, difference of means, and difference of standard		
	coefficients, test for ratio of variances. Chi square test for goodness of fit and		
	independence of attributes		
Course of			
After com	netion of the course, a student would be able to-		
CO1	calculate probabilities using conditional probability rule of probability and Baye	's theorem	1
	define discrete and continuous distribution and solve the mathematical and engine	ring probl	ame
	using these distributions	ing proor	01115
CO 3	compute probabilities of bivariate distributions, correlation coefficient regression	1 coefficie	nts
	compute productions of orvaniate distributions, conclusion econtrol tendency, dis		nus.
04	analyze various statistical problem and compute measure of central tendency, dis	persion, si	tewness
<u> </u>	relate Type Lerrer and level of significance for a hypothesis test when making a	logicion or	ad and
05	explain meaning of significance level in context		IU
Loorning	Posouroos:		
	Deene Chenduike Duesed Advanced Encineering Mathematics Withouse De	hlighers 2	
1.	Keena Garg, Chandrika Frasad, Advanced Engineering Mathematics, Khanna Pu	onsners. 2	•
2.	Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons		
5.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.		
4.	N.G. Das, Statistical Methods (Combined Volume), Tata-McGraw Hill.		
5.	Banarjee, De & Sen, Mathematical Probability, U.N. Dhar & Sons.		

6	A. Gupta, Groundwork of mathematical probability and statistics, Academic publishers.
7	S. Ross, A First Course in Probability, Pearson Education India
8	W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley
9	John E. Freund, Ronald E. Walpole, Mathematical Statistics, Prentice Hall.

Name of the course		PROGRAMMING FOR PROBLEM SOLVING		
Course	Code: ES(CS/IT)204	Semester: 2 nd		
Duratio	n: 6 months	Maximum Marks: 100		
Teachin	g Scheme	Examination Scheme		
Theory:	3 hrs./week	Mid Term Exam I: 15 Marks		
Tutorial	Nil	Mid Term Exam II: 15 Marks		
Practical	: Nil	Assignment & Quiz etc.: 20 Marks		
Credit P	oints: 3	Semester End Exam: 75 Marks (Two	third weig	ghtage
		for final reckoning i.e., 50 marks)	· · · ·	
Objective	:			
1.	To understand the various steps in Program	development and basic concepts in C Pr	ogrammin	g
	Language.			
2.	To learn how to write modular and reada	ble C Programs in C to solve problems		
Pre-Requ	isite:			
1.	Basic fundamental knowledge of Mather	natics.		
2.	Knowledge of arithmetic and logical reas	soning		
Module	e Content Hours Ma		Marks.	
1	Introduction to Computing		4	
	Computer Systems-Hardware and Software	re, Different components,		
	Computer Languages, Algorithm, Flowchar	rt, Representation of Algorithm and		
	Flowchart with examples.			
2	Introduction to C		4	
	History of C, Features of C, Structure of	C Program, Character Set, C		
2	Tokens-Keywords, Identifiers, Constants,	Variables, Data types, Operators.		
3	Statements Selection statements (Decision Making)	if and arritable statements with	4	
	examples Repetition statements (loops) whi	le for do while statements with		
	examples, Repetition statements (100ps)- will examples Unconditional statements- break	continue goto statements with		
	examples, enconcinential statements break	continue, goto statements what		
4	Arrays		4	
	Declaration and Initialization, One dimens	ional Arrays, Two dimensional		
	Arrays, Searching, Basic Sorting Algorithms.			
5	Strings		4	
	Declaration and Initialization, String	Input / Output functions, String		
	manipulation functions.			
6	Function		8	
	Designing Structured Programs, Types of Fu	nctions-User defined functions,		
	Standard functions, Categories of functions,	, rarameter rassing techniques,	1	

	Storage classes, Dynamic Memory Allocation, Recursion.		
7	Pointers	5	
	Introduction, Definition and Declaration of pointers, address operator,		
	Pointer variables, Pointers with Arrays.		
8	Structures and Unions	3	
	Introduction, Declaration and Initialization, Array of Structures, Unions.		
9	File Handling (Only if time is available)	2	
Course o	utcomes:		
After com	pletion of the course, a student would be able to-		
CO 1	Explain fundamentals of computers.		
CO 2	Use syntax and semantics of C Language to translate the algorithms into program	ns.	
CO 3	Implement program modules using branching and looping.		
CO 4	Organize data using arrays and structures.		
CO 5	Assemble functional program modules using functions and recursion.		
Learning	Resources:		
1.	Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill		
2.	E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill		
3.	Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prer	ntice Hall	of India

Name of the course		ENGLISH		
Course	Code: HS(CT/IT/CS) 201	Semester: 2 nd		
Duratio	on: 6 months	Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theory:	2 hrs./week	Mid Term Exam I: 15 Marks		
Tutorial	: Nil	Mid Term Exam II: 15 Marks		
Practica	1: Nil	Assignment & Quiz etc.: 20 Marks		
Credit P	Points: 2	Semester End Exam: 75 Marks (Two	third weigl	htage
for final reckoning i.e., 50 marks)				
Objectiv	e:			
1.	To develop and integrate the use of the	e four language skills i.e. Reading, Liste	ning,	
	Speaking and Writing.			
2.	To revise and reinforce structure alread	ly learnt		
3.	To enable the learner to communicate	effectively and appropriately in real life	situations	
Pre-Requ	uisite:			
1.	Basic English Grammar knowledge of	class 12 th standard		
Module	Content		Hours	Marks.
1	Vocabulary building and new words con-	cept:	4	
	• Concept of Word formation	on		
	• Collection of five new words of	everyday (from Oxford Dictionary &		
	English Newspapers)			
	Synonyms & Antonyms			

	Masculine & Feminine		
	• Singular & Plural		
2	Basic Writing Skill — Written English	4	
	• Sentence construction		
	• Use of Phrases, idioms and clauses in sentences		
	• Importance of proper punctuation		
	• Techniques for writing precisely		
	• Paragraph writing		
3	Avoiding mistakes & errors in English	4	
	• Subject — Verb agreement		
	• Noun — Pronoun agreement		
	Misplaced Modifiers		
	• Articles		
	• Prepositions		
4	Practice of Writing English — Form	6	
	• Precis writing		
	• Essay writing		
	• Letter writing		
	• Comprehension		
	• English Translation — Mother tongue to English & vice versa		
5	Communication Skill — incorporation of presentation skill & negotiation skill	6	
	• Listening comprehension		
	• Spoken English		
	• Comprehension, intonation, accent, stress and rhythm		
	• Conversation and dialogues		
	• Manoeuvring sentences — replacing words		
	• Interview — personal interview / Group Discussion		
	• Public speaking		
Course of	itcomes:		
After com	pletion of the course, a student would be able to-	contonooc	
	develop a minimum repository of English words to use for making meaningful	sentences.	
CO 2	write correct sentences using phrases, idioms, clauses with proper punctuatio	n marks.	
CO 3	identify the common mistakes and grammatical errors in sentence construction	•	
CO 4	write letters, essays, precis etc. in proper format.		
CO 5	able to speak English with correct pronunciation.		
CO 6	communicate effectively in public forum and in professional field		
Learning	Resources:		
1.	Technical Education: Raman and Sharma		
2.	Effective Technical Communication: Ashraf Rizvi		
3.	Effective Communication and Soft Skills: Nitin Bhatnagar & Mamta Bhatnaga	r	

Name of the course		Chemistry Lab		
Course Code: BSL(CS/IT) 206		Semester: 2 nd		
Duration: 6 months		Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theory: 1	Nil	Attendance : 10		
Tutorial: Nil Preparation of Lab Report : 30				
Practical: 3 hrs./week Experimental data/ Precision of work d		vork done	: 30	
Credit Po	ints: 1.5	Presentation/ analysis of the result	lt : 10	
		Viva Voce : 20		
Objective	:	I		
1.	To develop laboratory practice and safety.			
2.	To develop laboratory skills and instrumentati	on.		
3.	To deepen the understanding of concepts.			
4.	To provide scientific skills and chemical know	vledge.		
Pre-Requ	isite:			
1.	Class 12 th standard knowledge in Practical Ch	emistry		
Module	Content		Hours	Marks.
1	Qualitative analysis of an inorganic sample sat	lt.	6	
2	Estimation of Fe(II) present in a solution perr	nanganometrically	3	
3	Estimation of Fe(II) present in a solution dich	romatometrically.	3	
4	Determination of hardness of water in ppm un	it complexometrically.	6	
5	Determination of surface tension of a given lic	luid.	(any	
6	Determination of viscosity of a given liquid.		two	
7	Determination of rate constant of a reaction.		Modu	
8	Determination of cell constant and conductant	ce of a solution.	le 4-	
9	Potentiometry: determination of redox potenti	al and emf.	9)	
Course o	utcomes:		1	1
After con	pletion of the course, a student would be able to	0-		
CO 1	analyze qualitative parameters (basic and acid	radicals) of inorganic salts.handle	stalagmor	neter and
<u>CO2</u>	estimate quantities of Fe (II) permanganetome	trically and dichromatometrically		
CO_2	estimate dualities of re (ii) permanganeonie	v		
C04	handle stalagmometer and Ostwald's viscome	y. ter to determine surface tension an	d viscosity	<i>v</i> of
	liquid.		a viscosity	01
CO 5	develop perception about safety standards to b	e maintained inside the laboratory		
CO 6	6 develop skill to work in a team.			
Learning	Resources:			
1.	Practical Chemistry, Prof Sachin Dutta, Bhara	ti Book Stall		
2.	Practical Chemistry, R Mukhopadhyay & P G	Chatterjee, Books and Allied (p) Lt	td.	
3.	Practical Chemistry, Pandey, Bajpai, Giri, S C	Chand Publication		

4.	Vogel's Qualitative Inorganic Analysis, G Svehla, B Shivasankar (7th Edition), Pearson
5.	Vogel's Quantitative Chemical Analysis, J Mendham, R C Denney, J D Barnes, M Thomas, B
	Shivasankar (6th Edition), Pearson

Name of the course		PROGRAMMING FOR PROBLEM SOLVING LAB		
Course	Code: ESL(CS/IT) 205	Semester: 2 nd		
Duration: 6 months		Maximum Marks: 100		
Teachin	g Scheme	Examination Scheme		
Theory:	Theory: Nil Attendance: 10			
Tutorial	Nil	Preparation of Lab Report: 30		
Practical	: 4 hrs./week	Experimental data/ Precision of wor	k done: 30)
Credit P	pints: 2	Presentation/ analysis of the result:	10	
Objective	:			
1.	To understand the various steps in Program	n development.		
2.	To understand the basic concepts in C Prog	gramming Language.		
3.	To learn how to write modular and readable	le C Programs		
4.	To learn to write programs (using structure	ed programming approach) in C to solve	e problems	•
Pre-Requ	isite:			
1.	knowledge of Mathematics.			
2.	knowledge of arithmetic and logical operations.			
3.	knowledge of reasoning.			
Module	Content Hours Mark			Marks.
1	Familiarization with programming enviro	onment	2	
2	Simple computational problems using art	thmetic expressions	3	
3	Problems related to Branching and logical expressions 3			
4	Iterative problems using loops e.g., sum	of series	3	
5	1D Array manipulation, searching, sortin	g related problems	3	
6	Problems related to 2D arrays and String	s manipulation	3	
7	Problems related to Functions, call by value	e, call by reference and	3	
	dynamic memory allocation			
8	Problems regarding Recursion		8	
9	Pointers related problems		3	
10	Problems on structures and Unions		6	
Course of	utcomes:			
After com	After completion of the course, a student would be able to-			
	correct program			
CO 2	identify and correct logical errors and syntax errors encountered at run time.			
CO 3	write iterative as well as recursive programs.			
CO 4	represent data in arrays, strings and struc	tures and manipulate them through a p	rogram	

CO 5	declare pointers of different types and use them in defining self-referential structures.		
CO 6	work effectively in a team.		
Learning	Learning Resources:		
1.	E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill		
2.	Programming with C by T Jeyapoovan, Vikas Publishing House Pvt Ltd		
3.	Programming in C by J.B. Dixit, Laxmi Publications Pvt Ltd		

Name of the course		WORKSHOP/ MANUFACTURING		
		PRACTICES		
Course	Code: ESL(CS/IT) 206	Semester: 2 nd		
Duration: 6 monthsMaximum Marks: 100				
Teachin	g Scheme	Examination Scheme		
Theory:	1 hr./week	Attendance: 10		
Tutorial	: Nil	Preparation of Lab Report: 20		
Practica	l: 4 hrs./week	Experimental data/ Precision of wor	k done: 30	
Credit P	Points: 3	Presentation/ analysis of the result: 2	20	
Objectiv	e:	I		
Pre-Requ	uisite:			
Module	Content		Hours	Marks.
1	Manufacturing methods: casting, forming	ng, machining, joining and advanced	2	
	manufacturing methods			
2	CNC machining, Additive manufacturi	ng	3	
3	Fitting operations & power tools		3	
4	Electrical & Electronics		3	
5	Carpentry		3	
6	Plastic moulding, glass cutting		3	
7	Metal casting		3	
8	Welding (arc welding & gas welding),	brazing	8	
9	Machine shop		3	
10	Smithy		6	
Course o	utcomes:			
After con	ppletion of the course, a student would be	able to-		
CO 1	explain different manufacturing processe	es which are commonly employed in inc	lustry to fab	ricate
	components using different materials in	ncluding CNC machining, additive ma	anufacturing	g .
CO 2	complete a defined job in different sections of mechanical workshop e.g., carpentry, fitting etc.		ng etc.	
CO 3	find out dimensional accuracies and dimensional tolerances possible with different manufacturing		ufacturing	
<u>CO 4</u>	processes.			
CU 4	assemble different components to produce small devices.			
CO 5	make electrical wiring for household ap	oplications.		
Learning	Resources:			

1.	Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop						
	Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.						
2.	Kalpakjian S And Steven S. Schmid, "Manufacturing Engineering and						
	Technology",4thedition, Pearson Education India Edition, 2002.						
3.	Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology — I" Pearson						
	Education, 2008.						
4.	Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998.						
5.	Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw Hill House, 2017.						

Name of the course		ANGUAGE LAB				
Course Code: HSL(CT/IT/CS) 202		Semester: 2 nd				
Duration: 6 months		Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Theory:	Nil Att	Attendance: 10				
Tutorial	: Nil Pre	Preparation of Lab Report: 20				
Practica	l: 2hrs./week Ex	Experimental data/ Precision of work done: 30				
Credit Points: 1		Presentation/ analysis of the result: 20				
Objectiv	e:					
Pre-Reg	uisite:					
Module	ile Content			Marks.		
1	LISTENING		4			
	Listening to pre-recorded short episodes, conv	versations, passages, stories,				
	news bulletin, speeches by famous personalit	ties — Listening for general and				
	specific information etc.					
2	READING:		4			
	Reading aloud — by students individually — rea					
	passages on various topics of interest — Newspaper reading — Reading					
	humorous passages — Anecdotes — Stories — tricky sounds (conditio					
	Reading manuals — Reading individual sente					
	pronunciation, Tones, Punctuation, pauses etc Reading the titles of					
	popular books, movies and poems.					
3	SPEAKING:		6			
	Self-introduction — introducing one self, one's	family — one's friends and				
	relatives, one's country etc. Welcome A	ddress, Vote of thanks.				
	Extempore speeches. Short speech on simpl	le topics on simpler themes for				
	about one minute. Role play — Group Discussi	on — Debate — Seminars —				
	Machine Descriptions (depending upon brand	ches) — Compering —				
	Interviewing others by Asking Questions —	Interview Techniques —				
	Conversational Practice — Telephonic Cor	versation — Telephonic				
	Interviews — How to establish conversation	/ dialogues — Entry				
	Attempts/Admissions.					
4	WRITING:		6			
	Writing Resume, preparing Curriculum Vitae	e, Converting newspaper				
	headlines into sentences. Formation of Sentence	ces — Using the table of				

	Sentence-making and producing multiple sentences. Framing Questions for				
	the responses given. Tips for better performance in interviews.				
	Describing Objects. Describing Situations; Project report writing				
	(outline): significant features of Project report writing - Organization -				
	Presentation — Use of Impersonal Passives — Acknowledgements.				
5	PROFESSIONAL ETHICS & ORGANISATIONAL BEHAVIOUR: Different	4			
	kinds of Ethics — Ethics in different fields — Engineering Ethics — Senses of				
	Engineering Ethics — Moral Values — Integrity & Loyalty — Work Ethics —				
	Respect for others and authority — Empathy — Caring and Sharing — Honesty —				
	Courage and Commitment — Valuing Time — Cooperation & Teamwork —				
	Safety and Risk — Right Action — Professional ideals and virtues —				
	Individual's Ambition — Conflict Resolution — Self- Confidence — Customs				
	and Manners - General Behaviour - Etiquettes to be followed - Professional				
	Responsibility — Accountability — Leadership Quality — Effective				
	Communication skills.				
Course outcomes:					
After con	npletion of the course, a student would be able to-				
CO 1	develop listening skill with proper comprehension.				
CO 2	read aloud fluently various topics with proper pronunciation and articulation and neces	sary pauses			
CO 3	able to speak English fluently with correct pronunciation during Group Discussions,	Seminar			
	presentations, Telephonic conversations etc.				
CO 4	write Resume, prepare Curriculum Vitae and Convert newspaper headlines into s	sentences e	tc.		
CO 5	develop self-confidence and leadership quality through effective communication skills.				

B. Tech. (IT) Curriculum, 2018-19

SECOND YEAR FIRST SEMESTER

3 rd SEMESTER							
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRs./WEEK	CREDIT
THEORY							
01	BS(CS/IT)307	Mathematics- III	3	0	0	3	3
02	ES(CS/IT)307	Digital Electronics	3	0	0	3	3
03	PC(CS/IT)301	Computer Organization	3	1	0	4	4
04	PC(CS/IT)302	Data structure & Algorithms	3	0	0	3	3
05	HS(CS/IT)303	Economics for Engineers	3	0	0	3	3
SESSIONAL/PRACTICAL							
01	ESL(CS/IT)308	Digital Electronics Lab	0	0	3	3	1.5
02	PCL(CS/IT)303	Computer Organization Lab	0	0	3	3	1.5
03	PCL(CS/IT)304	Data structure & Algorithms Lab	0	0	3	3	1.5
04	PCL(CS/IT)305	IT Workshop (python/matlab)	0	0	3	3	1.5
05	CLA(IT)-3	Comprehensive Laboratory Assessment	0	0	0	0	1
TOTAL		15	1	12	28	23	
Name of the course		Mathematics-III					
---	--	--	---------				
Course Code: BS(CS/IT) 307		Semester: 3 rd					
Duration: 6 months		Maximum Marks: 100					
Teaching Scheme Examination Scheme							
Theory: 3 hrs/week Two Mid Term Exams: 30 Marks							
Tutorial: NIL Assignments, Quiz etc.: 20 Marks							
Credit P	oints: 3	End Semester Exam: 50 Marks					
Objective:							
1.	To learn the concept of Cauchy sequence, convergence of infinite series.						
3.	To understand gradient, divergence and c	url using the calculus and multiple variable	÷.				
4.	To understand Green, Gauss and stokes the	neorem using integral of a function.					
5.	To learn analytical technique for finding	solution of higher order differential equation	on.				
5.	To create mathematical models using first	st order differential equation.					
6.	To understand basic concept of graph the	cory.					
Pre-Req	uisite:						
1.	Mathematics –I (BS(CS/IT)101						
2.	Engineering Mathematics (UG level)						
Module	Content		Lecture				
			Hours				
1	Module 1:Sequences and series		8				
	Convergence of sequence and series, test	s for convergence, power series, Taylor's					
	series. Series for exponential, trigonomet	tric and logarithmic functions.					
2	Module 2: Multivariable Calculus (Diff	ferentiation)					
	Limit, continuity and partial derivatives,	Chain rule, Implicit function, Jacobian,					
	Gradient curl and divergence and related	I problems					
3	Module 3: Multivariable Calculus (Int	egration)	8				
	Double and triple integrals (Cartesian and	d polar), change of order of integration in	Ŭ				
	double integrals, Change of variables (Ca	artesian to polar). Theorems of Green,					
	Gauss and Stokes (Statement only) and r	elated problems.					
4	Module 4: Ordinary Differential Equa	tion	9				
	First Order Differential Equation, Exact,	Linear and Bernoulli's equations,					
	Equations of first order but not of first de	egree: equations solvable for p, equations					
	solvable for y, equations solvable for x a	nd Clairaut's form, general & singular					
	solution.						
	Second order linear differential equation	s with constant coefficients, D-operator					
-	method, method of variation of paramete	ers, Cauchy-Euler equation.					
5	Module 5: Graph Theory	wit Ewlan and Hamiltonian arouh	8				
	Basic Concept of graph, walk, Path Circ	uit, Euler and Hamiltonian graph,					
	Matrix Representation: Incidence & Adi	acency matrix					
	Tree Basic Concept of tree Binary tree	Spanning Tree Kruskal and Prim's					
	algorithm for finding the minimal spanni	ng tree.					
Course	Course Outcomes:						

After co	mpletion of this course, the learners will be able to -
CO1	apply the concept of sequence and convergence of infinite series in many approximation techniques in
	engineering disciplines and use the tools of power series to analyze engineering problems.
CO2	apply the knowledge for addressing the real life problems which comprises of several variables or
	attributes and identify extremum points in different surfaces of higher dimensions.
CO3	evaluate multiple integrals and apply the techniques to different physical problems.
CO4	solve first and second order ordinary differential equations by applying different techniques and also
	will be able to formulate differential equations for model systems and problems of engineering
	sciences.
CO5	apply the basic concepts of graph theory to network analysis, data analytics and many other branches
	of computer science.
Learnin	g Resources:
1	Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
2	Michael Greenberg, Advanced Engineering Mathematics, Pearson.
3	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
4	Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science.
5	Derek Holton & John Clark, A First Look at Graph Theory
6	Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
7	Raisinghania M.D, Advanced differential equation, S.Chand.
8	S.K Mapa, Real Analysis, Sarat
9	C Charles H.C. Little, Kee L. Teo, Bruce van Brunt, Real analysis via sequence and series, Springer
10	Douglas Brent West, Introduction to Graph Theory, Prentice Hall.
11	Robert wrede, Murray Spiegel, Schaum's Outline of Advanced Calculus, Third Edition, Schaum's outline
12	S.L. Ross, Differential equation, Willey.
13	Clark John, Holton Derek Allan, A First Look at Graph Theory, World Scientific.
14	E. L. Ince, Ordinary Differential Equations, Dover Publications.

Name of	the course:	Digital Electronics
Course C	Code: ES(CS/IT)307	Semester: 3 th
Duration	: 6 months	Maximum Marks: 100
Teaching	Scheme	Examination Scheme
Theory C	ontact Hrs.: 3 hrs/week	Mid Semester-1 Exam: 15 Marks
Tutorial Contact Hrs.: 0 hrs./week		Mid Semester-2 Exam: 15 Marks
Credit Po	int: 3	Assignment, Quiz & class attendance: 20 Marks
		End Semester Exam: 75 Marks (to be mapped into 50
		marks)
Objective	Objective:	
1.	To study Analog Electronic devices.	
2.	To study boolean logic and logic gates.	
3.	To compare digital and analog electron	ic circuits.

Pre-Requ	uisite:		
1.	Basic Electrical Engineering ES(CS/IT)101		
Module	Content	Lecture Hours	
1.	Basic Electronic devices: PN junction diode, Application of diodes in rectification, Half wave Full wave rectifier and Factors determining rectifier performance, Transistor, Transistor characteristics for CE, CB and CC mode, current amplification factors and their relationship, Introduction to JFET, MOSFET and CMOS.	08	
2.	Number system, Boolean algebra & logic gates: Binary numbers & Boolean algebra , Logic gates, Truth Tables and function minimization using algebraic method, Karnaugh map, , Signed binary number representation with 1's and 2's complement methods, Maxterm, Minterm, Representation in SOP and POS forms ; Realization of Boolean functions using NAND/NOR gates	10	
3.	Combinational circuits: Adder and Subtractor circuits ; Encoder, Decoder, Comparator, Multiplexer, De-Multiplexer, Parity Generator and checker.	10	
4.	Sequential Circuits: Flip-flops - SR, JK, Master slave JK, D and T. Register, counter	08	
Course C	Outcomes:		
After con	fter completion of this course the students will be able to -		
CO1	Identify the difference between analog and digital electronic systems.		
CO2	Compare the operation of semiconductor devices based on their characteristic curves.		
CO3	Explain number base conversions and K-Map.		
CO4	Construct various combinational logic circuits.		
CO5	Design various sequential circuits.		
Learning	Resources:		
1.	Morries Mano, Digital Logic Design, PHI		
2.	Kharate, Digital Electronics, Oxford		
3.	Leach & Malvino, Digital Principles & Application, Mc Graw Hill		
4.	D chattopadhyay & P.C.Rakshit. Electronics (Fundamentals and Applications), New Age International Publishers		
5.	Malvino, Electronic Principle, McGraw Hill.		
6.	Millman & Halkias, Integrated Electronics, McGraw Hill		
7.	Boyelstad & Nashelsky, Electronic Devices & Circuit Theory, PHI		
8.	R.P.Jain, Modern Digital Electronics, McGraw Hill		

Name of the course	Computer Organization
Course Code: PC(CS/IT)301	Semester: 3rd
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Semester 1 Exam: 15 Marks

Tutorial: 1 hrs/week		Mid Semester 2 Exam: 15 Marks		
Practical: 0 hrs/week		Assignment, Quiz, Attendance: 20 Marks		
Credit Points: 4 End Semester Exam: 50 Marks (75 marks converted to		d to 50)		
Objectiv	e:			
1	To identify different processor architectu	ares and their performance measurement	parameters.	
3	To develop the concept of instruction set	t of a processor.		
4	To design pipeline processor architecture	е.		
Pre-Req	uisite:			
1.				
Module	Content Lecture			
	Hours			
1	Introduction: History of computing, von	Neumann machine, Instruction and	3	
	data, fixed-point and floating point num	bers, errors, IEEE standards		
2	Processor design: Instruction Set Archite	ecture-Instruction format, opcode	9	
	optimization; operand addressing; Instru	ction implementation-data movement,		
	branch control, logical, input/output and	a debugging instructions; arithmetic		
	2's complement multiplication: Booth's	algorithm theory and examples: hit-		
	pair algorithm: high performance arithm	etic		
3	Control unit design: Hardwired control	micro-programmed control design –	6	
	micro-instruction formats, control optim	ization:	Ŭ	
4	Memory subsystem: Registers, Memory	hierarchy, memory interfacing, virtual	9	
	memory, cache memory, memory replac	ement techniques, address mapping,		
	content addressable memory (CAM), me	emory interleaving, real life problem		
	solution			
5	Peripherals: Basic properties, bus archite	ectures, control and arbitration,	7	
	interfacing of I/O devices, data transfer s	schemes –programmed I/O, memory		
	mapped I/O, I/O mapped I/O, DMA, mas	ss storage, RAID		
6	Pipelining: Pipelining, data path and inst	tructions, speed up, CPI, latency; linear	6	
	/ non-linear pipeline–reservation table, N	AAL; super-pipelined and super-scalar		
0	processors.			
After con	vulcomes:	able to-		
	Represent numbers in fixed-point and flo	auto to-		
	Vigualiza machinala instruction act archi	tooture (ISA) including basis instruction	fotob and	vaguta
	visualize machine's instruction set archi	and operand addressing modes	leten and ex	lecule
CO3	Explain the design and functioning of a	machines central processing unit (CPU) t	the data nat	h
	components (ALU, register file) and the	control unit.	Put	
CO4	Design memory organization systems an	d compare in terms of efficiency		
CO5	Analyse basic input/output functioning i	ncluding program controlled I/O and inte	rrupt I/O.	
CO6	Analyze performance improvement of sy	ystem using instruction and memory level	parallelism	1
Learning	Resources:			
1	Mano, M.M., "Computer System Archite	ecture", PHI.		
2	Behrooz Parhami" Computer Architecture", Oxford University Press			

3	Hayes J. P., Computer Architecture & Organisation, McGraw Hill
4	Hamacher, Computer Organisation, McGraw Hill,
5	N. Senthil Kumar, M. Saravanan, S. Jeevananthan, Microprocessors and Microcontrollers OUP
6	Chaudhuri P. Pal, Computer Organisation & Design, PHI
7	P N Basu- Computer Organization & Architecture , Vikas Pub

Name of the course		Data Structure and Algorithm		
Course Code: PC(CS/IT)302		Semester: 3rd		
Duration: 6 months		Maximum Marks: 100		
Teaching	y Scheme	Examination Scheme		
Theory:	3 hrs/week	Mid Term Exam I: 15 Marks		
Tutorial:	NIL	Mid Term Exam II: 15 Marks		
Practical	NII	Assignment.: 20 Marks		
Credit Po	ints: 3	Semester End Exam: 75 Marks (Two th final reckoning i.e., 50 marks)	nird weighta	ige for
Objectiv	e:			
1. 7	o Understand basic data structures such as	arrays, linked lists and trees.		
2. 7	o Calculate the time complexities of acces	ssing various data structures.		
3. Т	he ability to decide based on a given prob	lem which data structure is appropriate.		
Pre-Req	uisite:			
1.	Programming for problem solving (ES(C	CS/IT) 204)		
Module Content Lectur Hours		Lecture Hours		
1	Introduction :Elementary Data Organizations, Data Structure Operations -10insertion, deletion and traversal in arrays, asymptotic Notations, Time-Space10trade off, recursion, tail recursion, Tower of Hanoi, recursion tree and master10theorem method of complexity analysis, Linear Search and Binary Search10Techniques and their complexity analysis, finding min max in O(3n/2) time.			
2	Stacks and Queues: ADT Stack and its operations; Algorithms and their 6 complexity analysis, Applications of Stacks - Expression Conversion and 6 evaluation - corresponding algorithms and complexity analysis; ADT queue 6 and types of Queue- Simple Queue, Circular Queue, Operations on each type of 0 Queue- Algorithms and their analysis. 0			
3	3 Linked List: Singly linked lists, Representation in memory, Algorithms of several operations -Traversing, Searching, Insertion into, Deletion from linked list; Linked List representation of Stack and Queue; Doubly linked list - operations, space and time analysis; Circular Linked Lists - all operations and complexity analysis; Floyd-Cycle finding algorithm. 6			
4	Threaded Binary Tree, Binary Search Tr operations on each of the trees and their Tree traversal algorithms - recursive and	ee, AVL Tree, binary heap, b-tree; algorithms with complexity analysis; iterative. Catalan Number and its	10	

	connection to binary trees and stack sortable permutations ;Comparison of		
	performance of Heap, array and insertion priority queues.		
5	Hashing: Chaining, probing, Universal hashing function and analysis of	6	
	various hashing methods.		
Course (Dutcomes:		•
After con	npletion of this course, the learners will be able to-		
CO1	Analyze the algorithm to determine the time and computation complexity.		
CO 2	Decide based on nature of the search problem which search technique (Linear Search	arch, Binar	у
	Search, hashing) to use when.		
CO 3	Implement the Stacks, Queues and linked list data structure and apply the same to	o various p	roblems
CO 4	Apply non linear data structures in searching, insertion and retrieval of data. Ana	lyze the tin	ne
	complexity of various balanced and unbalanced trees and to apply the data structure to relevant		
	problems.		
Learning	g Resources:		
1	Horowitz, Sahni, Anderson-Freed: Fundamentals of Data Structures in C (Second	nd Edition	n),
	Universities Press, 2008.		
2	T.H. Cormen, C.E. Leiserson, R. Rivest and C. Stein: Introduction to Algorith	ms,(Secon	d/Third
	Edition), PHI, 2009.		
3	R. Sedgewick: Algorithms in C, Pearson, 2004.		
4	Steven S Skiena, Algorithm design manual, 2 nd Edition, Springer.		
5	Steven S Skiena, Miguel A. Revilla, Programming Challenges: The Programming	g Contest T	raining
	Manual (Texts in Computer Science) Springer.		

Name of the course		ECONOMICS FOR ENGINEERS		
Course Code: HS(CS/IT)303		Semester: 3 RD		
Duration: 6 months		Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theory:	3 hrs./week	Mid Term Exam I: 15 Marks		
Tutorial:	Nil	Mid Term Exam II: 15 Marks		
Practical:	Nil	Assignment.: 20 Marks		
Credit Points: 3		Semester End Exam: 75 Marks (Two third weightage for final reckoning i.e., 50 marks)		
Objective:				
1.	To understand various concepts of Economics, Accounting and Financial Management.			
2.	To familiarize with the application of the different topics covered in the syllabus.			
Pre-Requ	iisite:			
1.	Class 12th standard knowledge of Mathematics.			
Module	Content		Lecture	
			Hours	
1	Introduction to Economics for Engineers	- Basic Introduction to Economics,	6	
	Productive resources, Scarcity and the Ed	conomic problem, Efficiency and		
	sustainability, Engineering & Economics	, Scope of Economics for Engineers,		

	Role of Engineers in Economic Decision making, Problems in Economic		
	Decision-Making Decision-Making Process		
	Engineering Cost Concepts - Fixed Variable Marginal & Average costs Semi-		
	variable and Step cost. Product and Period cost. Direct and Indirect cost. Sunk		
	cost Shutdown cost Opportunity cost Recurring and Nonrecurring costs		
	Anticipated and Unanticipated costs. Differential or Incremental costs. Cash		
	cost vs. Book costs. Life Cycle Costing:		
	Cost estimation Techniques. Types Of Estimate. Annaoshes to cost estimation		
	Cost Estimation Techniques - Types Of Estimate, Approaches to cost estimation,		
	Cost Estimation Models - Per Onit Model, Segmenting Model, Cost Index		
	Model, Power-Sizing Model, Learning Curve Model, Benefits and difficulties in		
2		5	
2	Break-even analysis- Basic concept, terminology and assumptions, Derivation	5	
	of break-even point, Profit Volume (P/V) ratio, Margin of Safety, Uses and		
	limitations of break-even analysis.		
	Cash Flow, Interest and Equivalence: Cash Flow – Diagrams and Cash Flow		
	Statement, Time Value of Money, Interest factor and interest rate, Economic		
	Equivalence, Real, Nominal & Effective Interest rate.		
	Different Interest Formulae and their application.		
3	Capital budgeting and Project selection – Basic concept of capital budgeting,	9	
	Types of projects and cash flow patterns, features of a good capital budgeting		
	criteria; Net Present Value (NPV) Analysis, NPV criteria for revenue dominated		
	and cost dominated models, Internal Rate of Return (IRR) Analysis, Incremental		
	IRR, Comparison between NPV and IRR, Future Worth Analysis, Annual		
	Worth Analyzia Evolution of Dublic Durients and Dan of the Cost Datis Analyzia		
	worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis,		
	Sensitivity Analysis.		
4	Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of	8	
4	Sensitivity Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation.	8	
4	Sensitivity Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers,	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Beturn Application of Probability to analyse risk. Using Expected Value 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk: Economic 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation. 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation. Depreciation and Replacement Analysis - Basic aspects of depreciation, Pageons for depreciation, 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation. Depreciation and Replacement Analysis - Basic aspects of depreciation, Reasons for depreciation, Obsolescence, Depreciable assets, Depreciation, deplation and amortization. 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation. Depreciation and Replacement Analysis - Basic aspects of depreciation, depletion and amortization, Various methods of calculating depreciation; Parlacement analysis - Resign aspects, response for replacement Turge of 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation. Depreciation and Replacement Analysis - Basic aspects of depreciation, depletion and amortization, Various methods of calculating depreciation; Replacement analysis – Basic aspects, reasons for replacement, Types of 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation. Depreciation and Replacement Analysis - Basic aspects of depreciation, depletion and amortization, Various methods of calculating depreciation; Replacement analysis – Basic aspects, reasons for replacement, Types of maintenance, Replacement Analysis Decision Map, Minimum Cost Life of a Naw Ascet 	8 8 8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation. Depreciation and Replacement Analysis - Basic aspects of depreciation, depletion and amortization, Various methods of calculating depreciation; Replacement analysis – Basic aspects, reasons for replacement, Types of maintenance, Replacement Analysis Decision Map, Minimum Cost Life of a New Asset. 	8 8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation. Depreciation and Replacement Analysis - Basic aspects of depreciation, depletion and amortization, Various methods of calculating depreciation; Replacement analysis – Basic aspects, reasons for replacement, Types of maintenance, Replacement Analysis Decision Map, Minimum Cost Life of a New Asset. Introduction to Accounting – Basic concepts, scope, functions and limitations of 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation. Depreciation and Replacement Analysis - Basic aspects of depreciation, depletion and amortization, Various methods of calculating depreciation; Replacement analysis – Basic aspects, reasons for replacement, Types of maintenance, Replacement Analysis Decision Map, Minimum Cost Life of a New Asset. Introduction to Accounting – Basic concepts, scope, functions and limitations of Accounting, Financial Statements - Balance Sheet and Income Statement, 	8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation. Depreciation and Replacement Analysis - Basic aspects of depreciation, depletion and amortization, Various methods of calculating depreciation; Replacement analysis – Basic aspects, reasons for replacement, Types of maintenance, Replacement Analysis Decision Map, Minimum Cost Life of a New Asset. Introduction to Accounting – Basic concepts, scope, functions and limitations of Accounting, Financial Statements - Balance Sheet and Income Statement, Financial Ratios, Uses and limitations of ratio analysis. 	8 8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation. Depreciation and Replacement Analysis - Basic aspects of depreciation, depletion and amortization, Various methods of calculating depreciation; Replacement analysis – Basic aspects, reasons for replacement, Types of maintenance, Replacement Analysis Decision Map, Minimum Cost Life of a New Asset. Introduction to Accounting – Basic concepts, scope, functions and limitations of Accounting, Financial Statements - Balance Sheet and Income Statement, Financial Ratios, Uses and limitations of ratio analysis. Introduction to Financial Management - Overview and scope of Financial 	8 8	
4	 Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis, Sensitivity Analysis. Inflation and Price Change – Definition, types, stages, causes and effects of inflation. Price Change with Index Numbers – Definition and features of Index Numbers, Construction of index numbers, Price relative, Types of Index Numbers, Tests of Index Numbers, Use of Price Indexes in Engineering Economic Analysis. Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs. Return, Application of Probability to analyse risk, Using Expected Value, Variance, and Coefficient of Variation to measure return and risk; Economic Decision Trees, Simulation. Depreciation and Replacement Analysis - Basic aspects of depreciation, depletion and amortization, Obsolescence, Depreciable assets, Depreciation, depletion and amortization, Various methods of calculating depreciation; Replacement analysis – Basic concepts, scope, functions and limitations of Accounting, Financial Statements - Balance Sheet and Income Statement, Financial Ratios, Uses and limitations of ratio analysis. Introduction to Financial Management - Overview and scope of Financial Management, Approaches to Financial Management, Objectives of Financial 	8 8	

Course C	Outcomes:	
After completion of the course, a student would be able to:		
CO 1	Explain various concepts of Economics, Accounting and Financial Management.	
CO 2	Develop cost estimates using different cost estimation techniques.	
CO 3	Solve problems using break-even analysis and interest formulae.	
CO 4	Utilize various analysis methods for project selection.	
CO 5	Apply Depreciation, Replacement Analysis, Index numbers and price change, Financial statements,	
	Financial ratio analysis, return and risk analysis using appropriate methods in relevant problems.	
Learning	g Resources:	
1.	R. Panneerselvam: Engineering Economics, PHI.	
2.	H.L. Bhatia & S.N. Maheswari: Economics for Engineers, Second edition, Vikas Publishing House	
	Pvt. Ltd.	
3.	Donald Newnan, Ted Eschembach, Jerome Lavelle : Engineering Economics Analysis, OUP	
4.	Sullivan and Wicks: Engineering Economy, Pearson	
5.	Partha Chatterjee: Economics for Engineers, Vrinda Publications.	
6.	James L. Riggs, David D. Bedworth, Sabah U. Randhawa : Economics for Engineers 4e, Tata	
	McGraw-Hill .	
7.	Niall M. Fraser, Elizabeth M. Jewkes: Engineering Economics Financial Decision Making for	
	Engineers, Pearson	
8.	M.Y. Khan & P.K. Jain: Financial Management Text, Problems & Cases, McGraw Hill Education.	
9.	N.G. Das: Statistical Methods (combined volume), Tata McGraw-Hill.	

Name of the course		Digital Electronics Lab.		
Course Code: ESL(CS/IT)308		Semester: 3 rd		
Duration	a: 6 months	Maximum Marks: 100		
Teaching	g Scheme	Examination Scheme, Total Marks: 1	00	
Theory:	Nil	Attendance : 10		
Tutorial:	Nil	Preparation of Lab Report : 30		
Practical:	3 hrs./week	Experimental data/ Precision of work de	one : 30	
Credit Points: 1.5		Presentation/ analysis of the result : 10		
		Viva Voce: 20		
Module	e Content		Hours	
1.	I-V characteristics of semiconductor diode.		03	
2.	Input and output characteristics of BJT in CE configuration 03		03	
3.	Output and transfer characteristics of JFET in CS configuration. 03		03	
4.	Logic function realization using logic gates. 03		03	
5.	Design and implementation of half adder and full adder 03		03	
6.	Design and implementation of parity generator and checker 03		03	
7.	Construction of simple Decoder & Multiplexer circuits. 03		03	
8.	Realization of RS / JK / D flip flops using logic gates. 03		03	

Course C	Dutcomes:	
After con	npletion of this course the students will be able to -	
CO1	Measure static and dynamic resistance of P-N junction diode from the I-V characteristics.	
CO2	Identify different regions of operation of BJT and JFET from the characteristics curves.	
CO3	Construct logic circuits using minimum number of logic gates.	
CO4	Implement adder, parity generator and checker, decoder and multiplexer circuits using basic logic	
	gates.	
CO5	Construct different types of sequential circuits using basic logic gates.	
Learning Resources:		
1	Laboratory Manual For Introductory Electronics Experiments by Maheshwari, L.K., Anand, M.M.S.	
	, New Age International (P) Ltd., Publishers.	

Name of the course		Computer Organization Lab	
Course Code: PCL(CS/IT)303		Semester: 3 rd	
Duration	: 6 months	Maximum marks:100	
Teaching	g Scheme	Examination scheme:	
Theory:	Nil	Attendance: 10 marks	
Tutorial:	Nil	Preparation of Lab Report: 30 marks	
Practical:	3 hrs/week	Experimental data/ Precision of work done: 30 marks	
Credit Po	ints:1.5	Presentation / analysis of the result: 30 marks	
		Viva voce: 20 marks	
Module	Content		
1.	Familiarization with IC chips: Multiplexe	er, Decoder, Priority Encoder, ROM, Comparator, Flip flop	
	(Truth table verification and application)		
2.	Design Adder, Subtractor using basic gates, Multiplexer and decoder		
3.	Design Adder Subtractor composite unit		
4.	Design BCD adder		
5.	Design Carry look ahead adder circuit		
6.	Design ALU(Arithmetic Logic Unit)		
7.	Design of counter using Flip Flop		
8.	Synthesize sequential circuits		
9.	Execute Read and Write operation using	RAM chip	
10.	Cascading of RAM IC for vertical and he	prizontal expansion	
Course C	Dutcomes:		
After con	After completion of the course students will able to -		
CO1	Asses different Integrated circuits		
CO2	Design combinational circuits		
CO3	Design sequential circuits		
CO4	Implement different real life applications computer architecture.	of combinational and sequential circuits required for basic	

CO5	Evaluate different applications for higher order design	
Learning	Learning Resources:	
1	Mano, M.M., "Computer System Architecture", PHI.	
2	M. Lotia, Modern IC data and substitution Manual, PHI	

Name of the course:		Data Structure & Algorithm Lab			
Course Code: PCL(CS/IT)304		Semester: 3 rd			
Duration: 6 months		Maximum Marks: 100			
Teaching	Teaching Scheme Examination Scheme				
Theory:N	IL	Attendance 10			
Tutorial:	NIL	Preparation of Lab Report: 30			
Practical:	3 hrs/week	Experimental data/Precision of work do	ne: 30		
Credit Po	int:1.5	Presentation/ analysis of the result: 10			
		Viva Voce:20			
Objective	2:				
1.	To understand the working of basic data	structures			
2.	To analyse the performance of various da	ata structures			
3.	To implement various data structures				
4.	To understand the difference between lin	ear and non-linear data structure			
Pre-Requ	iisite:				
1.					
Module	Content Hours Marks				
1	Application of array insertion, deletion and traversal operations in solving 03 problems.				
2	Linear Search, Binary Search Techniques and time complexity comparison. 03				
3	Application of binary search like divide and conquer technique in various array 03 related O (log n) problems.				
4	Implementation and applications of Stacl	ks and queues using arrays.	03		
5	Implementation of Singly linked lists, Li	nked representation of Stack and Queue.	03		
6	Implementation of Binary Search Tree.		03		
7	Application of binary trees in solving van	rious problems.	03		
8	Array implementation of binary heap.		03		
9	Comparison of performance of binary Heap and array as priority queues. 03				
10	Implementation of B-Tree. 03				
11	Implementation of Chaining and probing techniques of collision resolution in 03				
	hashing.				
Course C	Dutcomes:				
After con	After completion of this course, the learners will be able to -				
	Analyze data sata and problems				
	Analyze data sets and problems.				

CO3	Implement non-linear data structures.
CO4	Compare various searching techniques.
CO5	decide which data structure to implement based on the problem.
Learning	Resources:
1.	Horowitz, Sahni, Anderson-Freed: Fundamentals of Data Structures in C (Second Edition),
	Universities Press, 2008.
2.	T.H. Cormen, C.E. Leiserson, R. Rivest and C. Stein: Introduction to Algorithms, (Second/Third
	Edition), PHI, 2009.
3.	R. Sedgewick: Algorithms in C, Pearson, 2004.
4.	Steven S Skiena, Algorithm design manual, 2 nd Edition, Springer.

Name of the course:Course Code: PCL(IT/CS)305Duration: 6 months		IT WORKSHOP			
		Semester: 3 rd			
		Maximum Marks: 100			
Teaching Scheme Examination Scheme					
Theory C	ontact Hrs.:	Attendance : 10			
Tutorial (Contact Hrs.:	Preparation of Lab Report : 20			
Practical:	3 hrs./week	Experimental data/ Precision of work of	lone : 30		
Credit Po	int: 1.5	Presentation/ analysis of the result : 20			
		Viva Voce: 20			
Objectiv	e:				
1.	To implement Python programs using co	re Python programming concepts and fu	inctions		
2	To understand Object Oriented Python P	rogramming techniques			
Pre-Reg					
1	Basic Programming concept				
1. M 1 1					
Module	Content		Hours	Marks	
1.	Python Fundamentals		6	10	
	Python Character Set, Python Tokens, Basic structure of Python Program,				
	Variables and assignments, Multiple Assignments, Dynamic Typing, Input and				
	Output in Python, Data Types and Operators, Control Structure, Sequence				
	Statements, Selection Statements, range() function, Iterative Statements, Jump			
	Statements				
2.	Strings		3	10	
Accessing Values in Strings, Traversing a String, String Operators, Built-In					
	String Methods				
3.	Lists		3	10	
	Creating a List. Accessing Lists. Difference between String and List			-	
	Traversing a List, List Operations				
4.	Tuples		3	10	
	Tuple vs List Creating a Tuple Accessir	og Tuples, Traversing a Tuple			

Comparing Tuples, Common Tuple Operators, Packing and Unpacking Tuples,

Tuples Built-In Functions, Deleting a Tuple

5.	Dictionary	3	10		
	Creating a Dictionary, Properties of Dictionary Keys, Traversing a Dictionary,				
	Accessing Keys or Values Separately, Nested Dictionary, Adding Elements to				
	Dictionary, Updating Elements in a Dictionary, Deleting Element from a				
	Dictionary, Dictionary Built-In Methods				
6.	Introduction to Python Modules	3	10		
	Math Module, Random Module, Statistics Module				
7.	Functions	3	10		
	Scope, Parameter passing, Passing strings, Default parameters, Return values,				
	Positional parameters				
8.	Object Oriented Programming(OOP) With Python	6	10		
	Basics of OOP, Class and Objects, Inheritance, Types of Inheritance				
9.	File Handling	3	10		
	Need for data file, Types of file :Text, Binary and Comma separated value files				
10.	Data Structures	3	10		
	Stacks : Push, Pop using a list, Queues : Insert, Delete using a list				
Course Outcomes:					
After con	npletion of this course the students will be able to -				
CO1	Interpret the fundamental Python syntax and semantics and be fluent in the use of	of Python	control		
	flow statements				
CO2	Express proficiency in the handling of strings and functions				
CO3	Identify the commonly used operations involving file systems				
CO4	Apply object oriented programming concepts				
CO5	Determine the methods to create and manipulate Python programs by utilizing lists, tuples and				
	dictionaries				
Learning	earning Resources:				
1.	https://www.anaconda.com				
2.	Rakesh K. Yadav, Srinivas Arukonda, Monu Singh, Tapasya Dinkar, Dileep Kumar Yadav, Zero				
	to Mastery in Python Programming, Vayu Education of India, ISBN: 978938976	9364			
3.	Pooja Sharma, Programming in Python, BPB Publications, ISBN: 9789386551276				
4.	Reema Thareja, Python Programming- Using Problem Solving Approach, OUP India, ISBN:				
	9780199480173				

SECOND YEAR SECOND SEMESTER

4 th SEMESTER							
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRs./WEEK	CREDIT
THE	ORY						
01	BS(CS/IT)408	Discrete Mathematics	3	1	0	4	4
02	ES(CS/IT)409	Communication Engineering	3	0	0	3	3
03	PC(CS/IT)406	Design & Analysis of Algorithm	3	0	0	3	3
04	PC(CS/IT)407	Formal Language and Automata Theory	3	1	0	4	4
05	PC(CS/IT)408	Computer Architecture	3	1	0	4	4
SESSIONAL/PRACTICAL							
01	ESL(CS/IT)410	Communication Engineering Lab	0	0	3	3	1.5
02	PCL(CS/IT)409	Algorithm Lab	0	0	3	3	1.5
03	PCL(CS/IT)410	Programming Lab using C++	0	0	3	3	1.5
04	CLA(IT)-3	Comprehensive Laboratory Assessment	0	0	0	0	1
MANDATORY COURSE							
01	MC(CS/IT)401	Environmental Sciences	2	0	0	2	0
TOTAL		17	3	9	29	23.5	

Name of the course		Discrete Mathematics		
Course Code: BS(CS/IT) 408		Semester: 4 th		
Duration: 6 months		Maximum Marks: 100		
Teaching	Teaching Scheme Examination Scheme			
Theory: 3 hrs./week Two Mid Term Exams: 30 Marks				
Tutorial:	1 hr./week	Assignments, Quiz etc.: 20 Marks		
Credit Po	ints: 4	End Semester Exam: 50 Marks		
Objective	2.			
1.	To learn the concept of division algorithm	and integer modulo n.		
3.	To understand counting techniques and co	ombinatorics in the context of discrete p	robability.	
4.	To learn recurrence relations and generating	ng functions.	-	
5.	To learn a given logic sentence and can cl	neck it's validity.		
5.	To understand Algebraic structures and cl	assify Boolean function.		
6.	To understand basic concept of graph theorem	bry, Dual and planar graph.		
Pre-Reau	lisites:			
1.	Mathematics –I (BS(CS/IT)101.Mathema	tics-III(BS(CS/IT)307)		
2.	Engineering Mathematics (UG level)			
Z. Module	le Content Lecture		Lecture	
Wibult			Hours	
1	Module 1: Theory of Numbers:		8	
	Principles of Mathematical Induction, We			
	theory and properties of divisibility; Fund	lamental theorem of Arithmetic;		
	Euclidean Algorithm for finding G.C.D and some basic properties of			
	with simple examples; Congruence, Residue classes of integer modulo n (Zn)			
2	and its examples, Chinese Remainder The	eorem.	7	
2	Niodule 2: Counting Techniques:	sion and avaluations: Poolumona	/	
	relations: Formulation & Modelling of did	ferent counting problems in terms of		
	recurrence relations. Solution of linear rec	surrence relations with constant		
	coefficients (upto second order) by (i) Th	ne iterative method (ii) Characteristic		
	roots method (iii) Generating functions m	ethod.		
3	Module 3: Propositional Logic:		7	
	Syntax, Semantics, Validity and Satisfiab	ility, Basic Connectives and Truth		
	Tables, Logical Equivalence: The Laws o	f Logic, Logical Implication, Rules of		
	Inference, The use of Quantifiers. Proof T	Techniques: Some Terminology, Proof		
	Methods and Strategies, Forward Proof, F	Proof by Contradiction, Proof by		
Contraposition, Proof of Necessity and Sufficiency. Disjunctive and		ifficiency. Disjunctive and		
4	Conjunctive normal form.		10	
4	Module 4: Algebraic Structures and M	orphism:	10	
	Argebraic Structures with one Binary Ope	eration, Semi Groups, Monoids,		
	Normal Subgroups Quotient group Hom	amorphism & Isomorphism		
	(Elementary properties only) Algebraic S	Structures with two Rinary Operation		
	(Liementary properties only). Algebraic S	operation,		

	Rings, Integral Domain and Fields. Boolean algebra and Boolean Ring,		
	Identities of Boolean Algebra, Duality, Representation of Boolean Function.		
5	Module 5: Graph Theory:	8	
	Planar and Dual Graphs. Kuratowski's graphs. Homeomorphic graphs. Eulers		
	formula ($n - e + r = 2$) for connected planar graph and its generalisation for		
	disconnected graphs. Detection of planarity. Graph colouring. Chromatic		
	numbers of simple graphs. Chromatic Numbers and its bounds, Independence		
	and Clique Numbers, Perfect Graphs-Definition and examples, Chromatic		
	polynomial and its determination, Applications of Graph Colouring. Simple		
	applications of chromatic numbers. Statement of four and five colour theorems.		
Course O	utcomes:		
After com	pletion of this course, the learners will be able to –		
CO1	determine multiplicative inverses, integer modulo n and solve linear congruence	s using Euc	lidean
	algorithm.		
CO2	solve different engineering problems using counting techniques and recurrence r	elation.	
CO3	express a given logic sentence in terms of predicates, quantifiers, and logical connectives and derive		d derive
	the solution for a given problem using deductive logic and prove the solution bas	sed on logic	al
	inference.		
CO4	classify the algebraic structure for a given mathematical problem and evaluate B	oolean fund	ctions and
	simplify expressions using the properties of Boolean algebra.		
CO5	apply the basic concepts of graph theory and find chromatic polynomial of a gra	ph.	
Learning	Resources:		
1	C L Liu and D P Mohapatra, Elements of Discrete Mathematics A Computer Or	iented Appı	oach, 3rd
	Edition by, Tata McGraw – Hill.		
2	N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI		
3	J.K. Sharma, Discrete Mathematics, Macmillan.		
4	Malik,Mordeson,Sen, Fundamentals of abstract algebra, Tata McGraw-Hill		
5	Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw - I	Hill	
6	Susanna S. Epp, Discrete Mathematics with Applications,4th edition, Wadsworth Publishing Co. Inc.		
7	Douglas Brent West, Introduction to Graph Theory, Prentice Hall		
8	Clark John, Holton Derek Allan, A First Look at Graph Theory, World Scientific	с	

Name of the course:	Communication Engineering
Course Code: ES(CS/IT)409	Semester: 4 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory Contact Hrs.: 3 hrs/week	Mid Semester-1 Exam: 15 Marks
Tutorial Contact Hrs.:	Mid Semester-2 Exam: 15 Marks
Credit Point: 3	Assignment, Quiz & class attendance: 20 Marks
	End Semester Exam: 75 Marks (to be mapped into 50
	marks)
Objective:	

1.	To study Amplitude Modulation and Frequency Modulation techniques			
2.	To study pulse modulation techniques and line codes.			
3.	To study different shift keying techniques			
4.	To study different aspects of satellite communication			
Pre-Re	quisite:			
1.				
Modu	Content	Lecture		
le		Hours		
1.	Introduction to Communication Engineering, need of Modulation, Amplitude Modulation(AM): Concept of AM, Calculation of Modulation Index, total transmitted power of AM, DSB-SC modulation & SSB-SC modulation techniques, calculation of Bandwidth and Savings of power, Demodulation of AM, Superheterodyne Receiver	12		
2.	Frequency Modulation(FM): Concept of FM, Direct & Indirect Method , Bandwidth calculation of FM, Demodulation of FM. Phase Modulation(PM) : Concept of PM, generation of PM from FM.	05		
3.	Pulse & Digital Communication: Sampling Theorem, aliasing effect, natural and flat top sampling, PAM, PWM,PPM, basic concept of Pulse Code Modulation (PCM), concept of quantization and quantization error, Companding, DPCM, Delta Modulation and Adaptive Delta Modulation, signal to quantisation noise ratio in PCM system. ASK, FSK, PSK, QPSK	12		
4.	Data Formatting: NRZ-Unipolar, NRZ-polar, NRZ-Bipolar, RZ-Bipolar, Manchester Coding, Synchronous and Asynchronous Data Transmission, Concept of Satellite Communication	07		
Course	Outcomes:		·	
After co	Support of this course the students will be able to -		1	
COI	Explain the necessity of Modulation and how to transfer information from one pla	ice to anoth	er place	
CO2	Apply the concept of sampling and quantization for analog to digital signal con	version.		
CO3	Compare various techniques of digital communication techniques.			
CO4	Compare different line coding techniques.			
CO5	Compare Satellite Communication system with terrestrial communication system.			
Learnii	ng Resources:			
1.	Modern Digital and Analog Communication Systems by B.P. Lathi, Published by Oxford University Press.			
2.	An Introduction to Analog and Digital Communications by Simon Haykin (Wiley	India)		
3.	Principles of Communication Engineering by Taub H. & Shilling D.L TMH			
4.	Introduction to Digital and Data Communication - Michael A. Miller, Jaico Publi	shing Hous	e	
5.	Communication Systems by A. B. Carlson, Published by McGraw-Hil			
6.	Principles of Analog and Digital Communication by Jerry D Gibson, Publis MacMillan.	shed by		
7.	A Text Book of Analog and Digital Communication by A Kumar, Umesh Publica	tion		
8.	Communication Systems (Analog and Digital) by Sanjay Sharma, Published by S	.K.Kataria &	& Sons	

9.	Modern Electronic Communication, Principles and Practice- Sharma & Sinha, Dhanpat Rai
	Publishing Company (p) Ltd

Name of	the course D	Design and Analysis of Algorithm		
Course (Code: PC(CS/IT)406 S	Semester: 4th		
Duration: 6 months		Maximum Marks: 100		
Teaching	g Scheme E	Examination Scheme		
Theory:	3 hrs./week	/lid Term Exam I: 15 Marks		
Tutorial:	NIL	Mid Term Exam II: 15 Marks		
Practical	NIL A	Assignment.: 20 Marks		
Credit Po	ints: 3 S	Semester End Exam: 75 Marks (Two t	third weigh	tage for
	fi	final reckoning i.e., 50 marks)		
Objectiv	e:			
1.	To understand different paradigms of algorit	thms such as greedy, dynamic progra	umming, div	vide and
	conquer etc			
2.	To calculate the time complexities of algorit	thms.		
3.	The ability to decide based on a given proble	lem which design paradigm and algor	ithm is app	ropriate
Pre-Req	uisite:			
1.	Data Structure and Algorithm (PC(CS/IT)30	02)		
Module	lule Content		Lecture	
			Hours	
1	Models of computation & Algorithm desig	gn frameworks: Models of	5	
	computation - RAM model, Deterministic a	and Non-deterministic problems,		
	Tractable and Intractable problems, Solvability, Algorithm design frameworks			
- Divide/Decrease and Conquer, Backtracking, Greedy, D		ng, Greedy, Dynamic		
	Conquer, Greedy and Dynamic Programmin	roblems; Comparison - Divide &		
2	Sorting: Comparison based sorts - Bubble s	sort insertion sort selection sort	8	
-	quick sort, merge sort, analysis and compari	ison. Non-comparison based sorts -	0	
	Radix sort, count sort; Median order statistic	cs; Lower bound of sorting.		
3	Illustrations of various design framework	<:	7	
	Dynamic Programming - Optimal substructu	ure and overlapping sub problems;		
	Matrix-chain multiplication; Backtracking -	8-queens problem; Greedy Method		
	- Knapsack problem, Job sequencing with de	eadlines.		
4	Graph Algorithms: BFS and DFS- algorith	nm and comparison; Single source	6	
	shortest path, All pair shortest paths; Prim's and Kruskal's algorithms for			
-	finding minimum spanning tree.			
5	5 String matching problem: Naive algorithm, Knuth-Morris-Pratt (KMP)		3	
6	algorithm.		4	
0	Amor uzeu Anarysis: Basic concept of amo	onized analysis, disjoint set data	4	
7	P and NP : Notion of NP Class: P NP NP-F	hard NP-complete: reduction	3	
,	(concept only); Cook's theorem (statement of	only)	5	

Course (Dutcomes:			
After con	After completion of this course, the learners will be able to-			
CO1	Classify algorithms as on the basis of various design paradigms.			
CO2	Analyze a problem to determine which design paradigm to use to solve the problem.			
CO3	Clearly distinguish between problems employing divide and conquer, greedy and dynamic programming.			
CO4	Solve various graph problems efficiently.			
CO5	Identify whether a problem is in P or NP			
Learning	Learning Resources:			
1	T.H.Cormen, C.E. Leiserson, R.L.Rivest and C. Stein ,"Introduction to Algorithms", PHI.			
2	Ellis Horowitz, Sartaz R. Sahani, "Fundamentals of Computer Algorithms". Computer Science			
	Press.			
3	A. Aho, J. Hopcroft and J. Ullman, "The Design and Analysis of algorithms", Pearson Education.			
4	D.E. Knuth: The Art of Computer Programming, Vol. 1, Vol. 2 and Vol. 3, Addison-Wesley.			
5	G.Brassard, P.Bratley, Fundamentals of Algorithmics -, PHI.			
6	S.Baase, Allen VenGelder"Computer Algorithms-Introduction to Design & Analysis"- 3 rd Edition, Pearson Education			

Name of the course:Formal Language and Automata 1		heory		
Course Code: PC(CS/IT)407		Semester: 4 th		
Duration: 6 months		Maximum Marks: 100		
Teaching	; Scheme	Examination Scheme		
Theory C	ontact Hrs.: 2 hrs/week	Mid Semester-1 Exam: 15 Marks		
Tutorial C	Contact Hrs.: 2 hrs/week	Mid Semester-2 Exam: 15 Marks		
Credit Po	int: 4	Assignment, Quiz & class attendance	: 20 Marks	
End Semester Exam: 75 Marks (to be mapped into marks)		e mapped into t	50	
Objective:				
1.	To understand the Chomsky hierarchy of languages.			
2.	To learn about regular expressions, finite automata, regular language.			
3.	To learn about context free and context s	ensitive grammars and its uses.		
4.	To learn about undecidability of language	es and Turing machines.		
Pre-Requ	uisite:			
1.				
Module	Content		Lecture	
			Hours	
1	Introduction:		02	
	Alphabet, languages and grammars, productions and derivation, Chomsky			
	hierarchy of languages.			
2	Regular languages and finite automata	::	10	
	Regular expressions and languages, deterministic finite automata (DFA) and			

	equivalence with regular expressions, nondeterministic finite automata (NFA),		
	epsilon-NFA and equivalence with DFA, regular grammars and equivalence		
	with finite automata, properties of regular languages (proof not required),		
	pumping lemma for regular languages, minimization of finite automata.		
3	Context-free languages and pushdown automata:	12	
	Context-free grammars (CFG) and languages (CFL), Chomsky and Greibach		
	normal forms, nondeterministic pushdown automata (NPDA) and equivalence		
	with CFG, parse trees, ambiguity in CFG, pumping lemma for context-free		
	languages, deterministic pushdown automata, closure properties of CFLs(proof		
	not required).		
	Context-sensitive grammars (CSG) and languages, linear bounded automata		
	and equivalence with CSG.		
4	Turing mashinga	10	
4	The basic model for Turing machines (TM). Turing recognizable (recursively,	10	
	anumarable) and Turing decidable (requiring) languages and their elecurity		
	properties, variants of Turing machines, nondeterministic TMs and		
	acuivalance with deterministic TMs, unrestricted grammars and equivalance		
	with Turing machines. TMs as enumerators		
5	Undeside bility:	02	
5	Universal Turing machine, the universal and diagonalization languages, PCP	02	
	Rice s theorem		
Course			
After co	nnletion of this course, the learners will be able to-		
CO1	identify the languages and its hierarchy. Alphabet languages regular grammars	and derivat	tions
CO^2	design finite state machines regular grammar and expressions for regular languages		uons
CO2	design muchdown outomate and context free anomar for context free language		
C03	Utsign pushdown automata and context free grammar for context-free-fanguages	, ,	
CO4	discuss the Turing machine and study of their variants and unrestricted grammar	`S	
CO5	decide whether a language is decidable or undecidable		
Learnin	g Resources:		
1.	Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Comp	outation,	
	Pearson Education Asia.		
2.	Dexter C. Kozen, Automata and Computability, Undergraduate Texts in Comput	ter Science,	
	Springer.		
3.	Michael Sipser, Introduction to the Theory of Computation, PWS Publishing.		
4.	John Martin, Introduction to Languages and The Theory of Computation, Tata McGraw Hill		
5.	John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Autor	nata Theory	у,
	Languages, and Computation, Pearson Education Asia.		

Name of the course	COMPUTER ARCHITECTURE
Course Code: PC(CS/IT) 408	Semester: 4th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs./week	Mid Term I: 15 Marks

Tutorial:	torial: 1 hrs/week Mid Term II: 15 Marks			
Credit Points: 4 Assignment, Test based on assignment		ts, Surprise	e tests,	
Quizzes, Presentations, etc.: 20 Ma		rks		
	End Semester Exam: 50 Marks			
Objective	28:			
1.	To identify different processor architectures and their performance measurement parameters.			
2.	To apply different techniques for improving the performance of processor.			
3.	To develop the concept of multiprocessor architecture.			
4.	To design pipeline processor architectur	е.		
Pre-Requ	isites:			
1.	Digital Electronics [ES(CS/IT)307]			
2.	Computer Organization [PC(CS/IT)301]			
Module	Content		Lecture	
			Hours	
1	Pipelining Architecture: Introduction:	Review of basic computer architecture	10	30
	(Revisited), Quantitative techniques in c	omputer design, measuring and		
	reporting performance. Pipelining: Basic	concepts, instruction and arithmetic		
	pipeline, data hazards, control hazards and structural hazards, techniques for			
	handling hazards. Exception handling. P	ipeline optimization techniques.		20
2	Memory Module: Hierarchical memory technology: Inclusion, Coherence 9 20			
	and locality properties; Cache memory organizations, Techniques for reducing			
2	cache misses, cache mapping techniques; Virtual memory organization. Instruction level parallelism. Design concerts, tasheismas for increasing U.D.			
5	RISC Architecture superscalar super pipelined and VLIW processor			
	architectures. Array and vector processors.			
4	Multiprocessor architecture: taxonomy	y of parallel architectures; Centralized	10	30
	shared-memory architecture: synchroniz	ation, memory consistency,		
	interconnection networks. Distributed sh	ared-memory architecture, Cluster		
	computers. Non von Neumann architectu	ares: data flow computers, reduction		
	computer architectures, systolic architect	tures		
Course O	utcomes:			
After com	pletion of this course students will be able		1 .	<u> </u>
COI	Explain the concept of pipeline architecture, different hazards and analyze different techniques for			
CO2	handling pipeline hazards			
	Assess the hierarchical memory technology			
	Design cache and virtual memory using different mapping techniques			
C04	Explain multiprocessor architecture and taxonomy of parallel architecture			
	Analyze the concepts of distributed shared-memory architecture, cluster computers			
006	Explain the design of Non von Neumann architectures: data flow computers, reduction computer			
Learning Resources:				
1	Advanced Computer Architecture Kai Hwanz & Nerech Istwari, McCrow IIII			
2	Advanced Computer Architecture-Kai Hwang & Naresh Jotwani, McGraw Hill			
۷.	Computer Architecture and Parallel Processing -Kai Hwang and A. Briggs, McGraw Hill			

3.	Computer Architecture: a quantitative approach - J. L. Hennessy and D. A. Patterson,, Harcourt
	Asia, Singapore.
4.	Computer Organization and Architecture - V. Rajaraman and T. Radhakrishnan PHI Learning Pvt.
	Ltd.
5.	Computer Architecture and Parallel Processing - Hwang and Briggs, TMH.
6.	Computer Architecture and Organization - Hayes, McGraw-Hill.

Name of	ame of the course Communication Engineering Lab.			
Course Code: ESL(CS/IT)410		Semester: 4 th		
Duration: 6 months		Maximum Marks: 100		
Teaching	; Scheme	Examination Scheme, Total Marks	: 100	
Theory:	Nil	Attendance : 10		
Tutorial:	Nil	Preparation of Lab Report : 30		
Practical:	3 hrs./week	Experimental data/ Precision of work	done : 30)
Credit Po	ints: 1.5	Presentation/ analysis of the result : 1	0	
		Viva Voce: 20		
Module	e Content Hours Mari			Marks
1.	Amplitude Modulation and Demodulation	n	03	
2.	Frequency modulation and Demodulation.		03	
3.	Generation and Detection of PAM		03	
4.	Generation and detection of PWM & PPM		06	
5.	Generation and detection of ASK		03	
6.	Generation and detection of FSK		03	
7.	Time Division Multiplexing & Demultiplexing 03			
Course C	ourse Outcomes:			1
After con	npletion of this course the students will be a	able to -		
CO1	Compare the Amplitude modulated(AM)	and Frequency modulated (FM) signal	s.	
CO2	Measure the modulation index of amplitu	de modulated and frequency modulated	d signals.	
CO3	Compare PAM, PWM and PPM signal	•		
CO4	Compare ASK and FSK signals with AM and FM signals.			
CO5	Identify the multiplexed signals at the	output of TDM system and the correspo	onding	
	demultiplexed signals at the receiver end.			
Learning	g Resources:			
1	Octave online https://octave-online.net/ t	he open-source alternative for simulati	on of the a	ibove
	experiments			

Name of the course:	Algorithm Lab
Course Code: PCL(CS/IT)409	Semester: 4 th
Duration: 6 months	Maximum Marks: 100

Teaching Scheme		Examination Scheme		
Theory:N	IIL	Attendance 10		
Tutorial:	NIL	Preparation of Lab Report: 30		
Practical	3 hrs/week	Experimental data/Precision of work done: 30		
Credit Po	int:1.5	Presentation/ analysis of the result: 10		
		Viva Voce:20		
Objectiv	e:	1		
1.	To understand the working of Fundament	ntal algorithms such as sorting.		
2.	To analyse the performance of algorithm	ns based on the underlying data structures		
3.	To implement various graph algorithms			
4.	To decide which algorithms to employ b	based on nature of problem.		
Pre-Req	uisite:			
1.				
Module	Content		Hours	Marks
1	Comparison of performance of various s	sorting algorithms.	03	
2	Implementation of median order statistic	cs in O(n) time	03	
3	Performance comparison of problem solving using dynamic programming and 03			
	recursion.			
4	Solving 8 queens problem using backtracking and brute force method with 03			
5	comparison of performance 02			
5	Solving of Knapsack and job sequencing using greedy approach			
6	Implementation of BFS and DFS both recursive and non-recursive version and 03 their performance comparison			
7	Implementation of Prim's algorithm and performance comparison based on 03			
	different data structures used			
8	Implementation of Dijsktra's algorithm	and performance comparison based on	03	
	different data structures used			
9	Implementation of Bellman Ford algorit	thm and all pair shortest path algorithm	03	
10	Implementation of KMP algorithm		03	
Course (Dutcomes:			
After cor	npletion of this course, the learners will b	e able to-		
	Deside which design peredigm to use for	ig algorithm.		
CO2	Decide which design paradigm to use for a particular problem			
	Implement various graph algorithms			
C04	Apply graph algorithms to real life problems			
	Implement string matching algorithms.			
	earning Kesources:			
1.	T.H. Cormen, C.E. Leiserson, R. Rivest and C. Stein: <i>Introduction to Algorithms</i> ,(Second/Third Edition), PHI, 2009.			
2.	R. Sedgewick: Algorithms in C, Pearson	on, 2004.		
3.	Steven S Skiena, Algorithm design man	uual, 2 nd Edition, Springer.		
4 5 6 7 8 9 10 Course C After cor CO1 CO2 CO3 CO3 CO4 CO5 Learning 1. 2. 3.	Solving 8 queens problem using backtra comparison of performance Solving of Knapsack and job sequencing Implementation of BFS and DFS both re- their performance comparison Implementation of Prim's algorithm and different data structures used Implementation of Dijsktra's algorithm different data structures used Implementation of Bellman Ford algorith Implementation of KMP algorithm Dutcomes: npletion of this course, the learners will b Compare performance of various sortir Decide which design paradigm to use for Implement various graph algorithms Apply graph algorithms to real life prob Implement string matching algorithms. Resources: T.H. Cormen, C.E. Leiserson, R. Rive Edition), PHI, 2009. R. Sedgewick: <i>Algorithms in C</i> , Pearson Steven S Skiena, Algorithm design man	acking and brute force method with g using greedy approach ecursive and non-recursive version and l performance comparison based on and performance comparison based on thm and all pair shortest path algorithm e able to- ng algorithm. or a particular problem blems est and C. Stein: <i>Introduction to Algorithe</i> on, 2004. mual, 2 nd Edition, Springer.	03 03 03 03 03 03 03 03 03 ms,(Secon	d/Third

Name of the course:		Programming Lab Using C++		
Course Code: PCL(CS/IT)410		Semester: 4th		
Duration: 6 months		Maximum Marks: 100		
Teaching	g Scheme	Examination Scheme		
Theory C	ontact Hrs.: Nil	Attendance: 10 marks		
Tutorial (Contact Hrs.: Nil	Preparation of Lab Report: 30 marks		
Practical:	3 hrs/week	Experimental data/ precision of work: 30) marks	
Credit Po	vint:1.5	Presentation / analysis of the result: 30 r	narks	
		Viva voce: 20 marks		
Objectiv	e:			
1.	To learn the syntax and semantics of the G	C++ programming language		
2.	To learn how to write inline functions for	efficiency and performance.		
3.	To learn how to implement copy construct	tors and class member functions		
4.	To learn how to design C++ classes for co	ode reuse		
5.	To understand how C++ improves C with	object-oriented features		
Pre-Req	uisite:			
1.	C programming lab			
2.	Data structure Lab			
Module	Content			Marks
1	Introduction to the source code writing,	compilation and execution process	03	
	of C++ programme. Writing C++ Progr	amme using I/O stream, command		
	line arguments. Basic loop control, fund	ctions with CBV and CBR,		
	identification of variables with scope re	solution operator.		
2	Programme writing on classes, creation	n of objects, constructors and	03	
	destructors, accessing members, array o	f objects, accessing of static		
	members.			
3	Programme writing on function overloa	iding, constructor overloading and	03	
	defaultconstructor, Object passing as fu	inction arguments and returning of		
4	objects from functions.	11	02	
4	of objects	, local classes., dynamic initialization	03	
5	Programme writing on copy constructor	r, operator overloading - binary and	03	
	0 0 17			
6.	unaryoperators. operator overloading u	sing friend functions.		
multilevel inheritance, hierarchical inheritance with constructor calling			06	
	unaryoperators. operator overloading u Programme writing on derived classes, multilevel inheritance, hierarchical inheritance,	sing friend functions. implementation of single inheritance, eritance with constructor calling	06	
	unaryoperators. operator overloading u Programme writing on derived classes, multilevel inheritance, hierarchical inher sequence.	sing friend functions. implementation of single inheritance, eritance with constructor calling	06	
7.	 unaryoperators. operator overloading u Programme writing on derived classes, multilevel inheritance, hierarchical inheritance. Programme writing on multiple inheritance 	sing friend functions. implementation of single inheritance, eritance with constructor calling ances, constructor calling in derived	06 03	
7.	unaryoperators. operator overloading u Programme writing on derived classes, multilevel inheritance, hierarchical inhe sequence. Programme writing on multiple inherita classes, virtual base classes.	sing friend functions. implementation of single inheritance, eritance with constructor calling ances, constructor calling in derived	06	
7.	 unaryoperators. operator overloading u Programme writing on derived classes, multilevel inheritance, hierarchical inheritance. Programme writing on multiple inheritance classes, virtual base classes. Programme writing on abstract classes, programme to derived 1 	sing friend functions. implementation of single inheritance, eritance with constructor calling ances, constructor calling in derived pointer to objects, this pointer,	06 03 06	
7.	 unaryoperators. operator overloading u Programme writing on derived classes, multilevel inheritance, hierarchical inherita sequence. Programme writing on multiple inherita classes, virtual base classes. Programme writing on abstract classes, pointers to derived class. 	sing friend functions. implementation of single inheritance, eritance with constructor calling ances, constructor calling in derived pointer to objects, this pointer,	06 03 06	
7. 8. 9.	 unaryoperators. operator overloading u Programme writing on derived classes, multilevel inheritance, hierarchical inheritance, Programme writing on multiple inheritance classes, virtual base classes. Programme writing on abstract classes, pointers to derived class. Programme writing on virtual functions 	sing friend functions. implementation of single inheritance, eritance with constructor calling ances, constructor calling in derived pointer to objects, this pointer, s and run time polymorphism. Eucetion templates	06 03 06 03 02	

Course C	Course Outcomes:			
After con	npletion of this course the students will be able to -			
CO1	Define the concept of object oriented programming.			
CO2	Implement the concepts of loop, functions, array & pointers in C++.			
CO3	Analyze the concept of classes/objects, constructor and destructor.			
CO4	Apply the concept of inheritance in programming.			
CO5	Apply the concept of encapsulation in programming.			
CO6	Implement the concept of polymorphism in programming.			
Learning	Learning Resources:			
1.	The C++ Programming Language (4 th edition) by Bajarne Stroustrup			
2.	C++ Primer 5 th Edition			
3.	A Tour of C++ (C++ in –Depth Series) 1st Edition			
4.	The Design and Evolution of C++.			

Name of	the course	ENVIRONMENTAL SCIENCES			
Course C	ode: MC(CS/IT)401	Semester: 4 th			
Duration	: 6 months	Maximum Marks: 100			
Teaching	Scheme	Examination Scheme			
Theory: 2	2 hrs./week	Mid Term Exam I: 15 Marks			
Tutorial:	Nil	Mid Term Exam II: 15 Marks			
Practical:	Nil	Assignment.: 20 Marks			
Credit Por	ints: Nil	Semester End Exam: 75 Marks (Two	third weightage for		
		final reckoning i.e., 50 marks)			
Objective	**				
1.	To provide knowledge as to why the st	tudy of environment is of great importa	ance		
2.	To learn about problems of various types of pollution (anthropogenic and natural), loss of forest,				
	degradation of land, waste disposal, global warming, depletion of ozone layer and loss of				
	biodiversity i.e. degradation of Mother Earth made by the humans.				
3	To know about "Sustainable development", i.e. meeting human goals along with sustaining the				
	ability of natural systems to provide resources and services for mankind to survive.				
4	To get idea about disaster management to deal with environmental hazards in the events of natural				
	and anthropogenic calamities.				
5	To learn various environmental protectio	n Acts, Environmental Impact Assessm	nent (EIA), which is		
D D	mandatory for setting up new industries				
Pre-кеqu	lisite:				
1.	Class 12 standard knowledge of physics,	chemistry, biology, mathematics			
Module	e Content Lecture				
			Hours		
1	The Multidisciplinary nature of enviro	onmental studies :Definition, scope	2		
	and importance, Need for public awarene	ess.			
2	The Natural Resources		5		

	a) Natural resources and associated problems		
	Forestresources: Use and over-exploitation, deforestation, mining, dams and		
	their effects on forests and tribal people.		
	Water resources: Use and over-utilization of surface and ground water,		
	floods, drought, conflicts over water, dam's benefits and problems.		
	Mineral Resources: Use and exploitation, environmental effects of		
	extracting and using mineral resources.		
	Food Resources: World food problems, changes caused by agriculture and		
	over grazing, effects of modern agriculture, fertilizers- pesticides		
	problems, water logging, salinity.		
	Energy Resources: Growing energy needs, renewable and non-renewable		
	energy sources, use of alternate energy sources.		
	Land Resources: Land as a resource, land degradation, man induced		
	landslides, soil erosion, and desertification.		
	b) Role of individual in conservation of natural resources.		
	c) Equitable use of resources for sustainable life styles		
3	Eco Systems	5	
	a) Concept of an eco system: Understanding ecosystems, Ecosystem		
	degradation, Resource utilisation		
	b) Structure and function of an eco system.		
	c) Producers, consumers, decomposers.		
	d) Energy flow in the eco systems: Water cycle, Carbon cycle, Oxygen		
	cycle, Nitrogen cycle, Energy cycle, Integration of cycles in nature		
	e) Ecological succession.		
	f) Food chains, food webs and ecological pyramids.		
	g) Introduction, types, characteristic features, structure and function of (1)		
	Forest ecosystem (ii) Grass land ecosystem (iii) Desert ecosystem (iv)		
	Aquatic eco systems (ponds, streams, lakes, rivers, oceans, estuaries)		
4	Biodiversity and its Conservation	5	
	(a) Introduction, Definition: genetic diversity, species diversity and		
	ecosystem diversity.		
	(b) Biogeographically classification of India.		
	(c) Value of biodiversity: consumptive, productive, social, ethical		
	(d) Biodiversity at global, national and local level.		
	(e) India as a mega diversity nation.		
	(f) Hot-spots of biodiversity.		
	(g) Threats to biodiversity: habitats loss, poaching of wild life, man		
	wildlife conflicts.		
	(h) Endangered and endemic species of India.		
	(i) Conservation of biodiversity: in-situ and ex-situ conservation of		
	biodiversity.		
5	Environmental Pollution	6	
	(a) Definition,		
	(b) Causes, effects and control measures of: (1) Air pollution, (2) water		
	pollution, (3) Soil pollution, (4) Marine pollution, (5) Noise pollution, (6)		
	Thermal pollution, (7) Nuclear hazards		
	(c) Solid waste Management: Causes, effects and control measures of		

	urban and industrial wastes.				
	(d) Role of an individual in prevention of pollution.				
	(e) Disaster management: Floods, earth quake, cyclone and landslides,				
	industrial safety.				
6	Social issues and the Environment	4			
	(a) Urban problems related to energy				
	(b) Water conservation, rain water harvesting, water shed management				
	(c) Resettlement and rehabilitation of people; its problems and concerns,				
	(d) Climate change, global warming, acid rain, ozone layer depletion,				
	nuclear accidents and holocaust				
	(e) Wasteland reclamation				
	(f) Consumerism and waste products				
	(g) Environment protection Act				
	(h) Air (prevention and control of pollution) Act				
	(i) Water (prevention and control of pollution) Act				
	(j) Wildlife protection act				
	(k) Forest conservation act				
	(l) Issues involved in enforcement of environmental legislations(m)				
	Public				
	awareness				
Course o	utcomes:				
After com	pletion of the course the learners will be able to-				
CO 1	apply the knowledge regarding how human beings should make a sustainable living using the				
	Earth's finite resources.				
CO 2	use scientific methods judiciously in preventing causes which damage natural ecosystems.				
CO 3	use the knowledge in protecting endangered and endemic species and conserving	ng biodive	rsity.		
CO 4	use the knowledge in preventing/minimising various types of pollution, their causes and effects.				
CO 5	apply their knowledge of disaster management in case of natural and anthropogenic calamities.				
CO 6	apply their knowledge of various environment protection acts, "Environment Impact Assessment"				
	(EIA) as and when required in setting up of new industries as well as expansion of industries in				
	which they will be employed				
Learning	Resources:				
1.	Anubha Kaushik, C.P. Kaushik, Perspectives in environmental studies, New Ag	ge Internati	onal (P)		
	Ltd, Publishers				
2.	Erach Bharucha, Textbook for Environmental Studies, University Grants Comm	nission			
3.	D. D. Mishra, Fundamental concepts in Environmental Studies, S Chand & Co	Ltd			
4.	Anil Kumar De, Arnab Kumar De, Environment and Ecololgy, New age interna	tional (P) I	Limited,		
	Publishers				
5.	Environmental Chemistry by Anil Kumar De, Wiley Eastern Limited				
6.	Linda D. Williams, Environmental Science demystified, McGRAW-HILL				
7.	Shashi Chawla, A Textbook of Environmental Studies, Tata McGraw Hill Educ	ation Priva	te		
	Limited.				

THIRD YEAR FIRST SEMESTER

5 th SEMESTER							
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRS./WEEK	CREDIT
THE	ORY						
01	PC(CS/IT)511	Operating Systems	3	1	0	4	4
02	PC(CS/IT)512	Database Management System	3	1	0	4	4
03	PC(CS/IT)513	Object Oriented Programming	3	1	0	4	4
04	PEC(IT)501	Elective-I	3	0	0	3	3
05	MC(CS/IT)502	Constitution of India/ (Essence of Indian Traditional Knowledge)	2	0	0	2	0
SESS	SIONAL/PRACTI	CAL					
01	PCL(CS/IT)514	Operating System Lab	0	0	3	3	1.5
02	PCL(CS/IT)515	Database Management System Lab	0	0	3	3	1.5
03	PCL(CS/IT)516	Programming Lab using Java	0	0	3	3	1.5
03	CLA(IT)-5	Comprehensive Laboratory Assessment	0	0	0	0	1
TOTAL		14	3	9	26	20.5	

PEC(IT)501

A: Information Theory and Coding

B: Computer Graphics

C: Advanced Computer Architecture

D: Computational Geometry

Name of	the course	OPERATING SYSTEMS		
Course C	Code: PC(CS/IT)511	Semester: 5 th		
Duration	a: 6 months	Maximum Marks: 100		
Teaching	g Scheme	Examination Scheme		
Theory:	3 hrs/week	Mid Term I Exam:	15	Marks
Tutorial:	1 hr/week	Mid Term II Exam:	15	Marks
Credit Po	ints: 4	Class performance & Attendance:	20	Marks
End Semester Exam & Viva:			50	Marks
Objectiv	e:			
1.	To understand and analyze operating s	system structures and services.		
2.	To understand and determine process	management in Operating System.		
3.	To understand and determine memory	management and file management in Operat	ting Syst	tem.
4.	To analyze and assess disk managem	ent, I/O management and protection & secu	rity in C	Operating
	System.			
Pre-Requ	uisite			
1.	Data Structures & Algorithms -PC(CS	S/IT)302		
2.	Computer Architecture – PC(CS/IT)40	08		
Module	Content		Hrs.	Marks
1	Introduction of O.S: Concept of C	OS. Operating system services, dual-mode	4	
	operation, Evaluation of O.S, Differe	nt types of O.S: batch, multi-programmed,		
	timesharing, real-time, distributed, net	twork.		
	Introduction of Process: Concept utilization Operations on processes II	of process, Process life cycle, Resource		
2	System Structure: Computer syste	m operation. Operating system structure.	4	
	kernel: microkernel, monolithic kernel	l, system calls.		
	Threads: Overview, Benefits of threa	ds, User and kernel threads, multithreading		
	models.			
3	CPU Scheduling: Scheduling criteria	, Preemptive & non-preemptive scheduling,	10	
	Scheduling algorithms (FCFS, SJF/SR	TF, RR, Priority), MLQ scheduling, Multi-		
	Processor scheduling.	lition Critical Socian problem Somenhore		
	Mutex Monitor	inton, entreal section problem, semaphore,		
	Deadlocks: Deadlock criteria, Met	thods for handling deadlocks, Resource		
	allocation graph, Banker's algorithm,	Recovery from deadlock.		
4	Memory Management: Background	d, Logical vs. physical address, Address	8	
	binding, Swapping, Contiguous	memory allocation, Fragmentation,		
	Segmentation, Paging.			
	Virtual Memory: Concept, Dem	hand paging, Page replacement, Page		
	replacement algorithms (FCFS, LRU,	Optimal).		
	allocation methods (contiguous linker	d indexed)		
5	Disk Management: Disk structure	Disk formatting, Boot block, Bad blocks	3	
	Disk scheduling algorithms (FCFS, SS	STF, SCAN, C-SCAN, LOOK, C-LOOK).	-	

6	I/O Management: I/O hardware, Polling, Interrupts, DMA, Application I/O 7
	interface, Kernel I/O subsystem, Spooling and device reservation.
	Protection & Security: Goals of protection, Security problem, Authentication,
	Program threats, System threats
Course C	Dutcomes:
After con	npletion of the course students will able to -
CO1	Analyze different types of operating system.
CO2	Select different types of kernel in operating system.
CO3	Apply different mechanism to handle process management.
CO4	Determine different memory management, file management mechanism to provide better performance to users.
CO5	Evaluate different disk management policies.
CO6	Implement different techniques for protection and security.
Learning	g Resources:
1	Operating System concepts- A. Silberschatz, Greg Gagne, and Peter Baer Galvin- Wiley India
2	Operating Systems: Internals and Design Principles-William Stallings-Pearson
3	Operating Systems Concepts & design - Milan Milenkovic, TMH
4	Tanenbaum A.S. and Woodhull "Operating System Design & Implementation", Pearson
5	Advanced Concepts in operating Systems - Mukesh Singhal and Niranjan G. Shivaratri, TMH
6	Operating System Dhamdhere: - TMH
7	An Introduction to Operating Systems- Dietel H. N- Addison Wesley.

Name of	the course	Database Management System	
Course (Code: PC(CS/IT)512	Semester: 5 th	
Duration	n: 6 months	Maximum Marks: 100	
Teaching	g Scheme	Examination Scheme	
Theory:	3 hrs./week	Mid Term I: 15 Marks	
Credit Po	pints: 3	Mid Term II: 15 Marks	
		Assignments, Test based on assignments, Surprise tests,	
		Quizzes, Presentations, Attendance etc.: 20 Marks	
		End Semester Exam: 75 Marks (to be mapped into 50	
		marks)	
Objectiv	'e:		
1.	Understand the basic concepts and the	applications of database systems.	
2.	To learn the fundamentals of data mod	lels and to represent a database system using ER diagrams.	
3.	To study SQL and relational database	design.	
4.	To understand the fundamental concepts of transaction processing, concurrency control techniqu		
	and recovery procedures.		
5.	To understand the internal storage st	ructures using different file and indexing techniques which	
	will help in physical DB design.		
Pre-Req	uisite:		

1.	Data structure & Algorithms PC(CS/IT)302				
2.	Discrete Mathematics BS(CS/IT)408				
Module	Content	Hrs.	Marks		
1	Introduction:	2			
	Concept of File system & Database system & their differences, Data abstraction				
	& Data independence in DBMS, Instances & Schemas, Data models, Database				
	languages (Data definition & Data manipulation languages).				
2	Entity Relationship Model:	3			
	Basic concepts, Types of attributes, Relationship sets, Mapping cardinalities &				
	Participation constraints, Types of Keys., Entity-Relationship diagram (E-R				
	diagram), Strong & Weak entity sets, Specialization & Generalization &				
	Aggregation in ER model.				
3	Relational Model and SQL:	8			
	Fundamental operations in Relational Algebra, Extended Relational Algebra				
	operations, Concept of View, Relational Calculus, Characteristic of SQL, Types				
	or SQL commands (DDL, DML, DCL, TCL), SQL operators & men				
	Operations on Modification of databases (Insertion, Undation, Deletion)				
4	Integrity Constraints and Normalization:	7			
-	Concept of Foreign Key, Definition of integrity constraints. Types of integrity	'			
	constraints (Domain Constraints, Entity Integrity Constraint, Referential				
	Integrity Constraints, Key Constraints), Functional Dependency, Closure of				
	functional dependency, Armstrong's Axioms, Canonical Cover, Lossless join				
	decomposition & Dependency preservation, Full & Partial & Transitive				
	dependency, Prime & Non-prime attribute, Need of Normalization, 1NF, 2NF,				
	3NF, BCNF.				
5	Transaction Management:	13			
	Overview of Database transaction concepts, ACID properties, Transaction state,				
	Concurrent executions, Conflicts in Transaction, Serializability, Conflict &				
	View Serializability, Test for serializability (Precedence Graph), Recoverability,				
	Recoverable, Cascade less & Strict schedules, Shared lock & Exclusive lock,				
	Two phase locking protocol, Deadlock handling, Deadlock prevention,				
	Deadlock detection, Deadlock recovery, Causes of transaction failure, Storage				
	structure, Log-based recovery, Write Ahead Logging (WAL) protocol,				
6	Storage:	2			
0	Single level & Multi level indexing Structure of B & B^+ tree File organization	3			
	in B^+ tree Hashing techniques				
Course (Jutcomes:				
After con	appleting the course, the student will be able to-				
CO1	Explain the concept of Database system.				
CO2	Design ER-models to represent simple database application scenarios.				
CO3	Implement Relational algebra and SQL queries on database.				
CO4	Apply integrity constraints and normalization to improve database design.				
CO5	Solve concurrency problems in database transactions.				

CO6	Explain basic database storage structures and access techniques.				
Learning	Learning Resources:				
1.	Henry F. Korth and Silberschatz Abraham, "Database System Concepts", McGraw Hill,				
	ISBN: 9780072283631				
2.	Elmasri Ramez and Navathe Shamkant, "Fundamentals of Database Systems", Pearson Education				
	India, ISBN: 9788131716250				
3.	Ramakrishnan and Gehrke, "Database Management Systems", McGraw-Hill,				
	ISBN: 9780071231510				
4.	Ivan Bayross, "SQL, PL/SQL the Programming Language of Oracle",4 th edition, BPB Publications				
	ISBN: 9788176569644				
5.	C.J. Date, "An Introduction to Database Systems", 7th edition, Pearson, ISBN: 9780321197849				

Name of the courseObject Oriented Programming				
Course C	Course Code: PC(CS/IT)513Semester: 5st			
Duration	: 6 months N	faximum Marks: 100		
Teaching Scheme Examination Scheme				
Theory: 3 Mid Semester Exams: 30 Marks				
Tutorial:	1 A	ssignment, Quiz etc.: 20 Marks		
Credit Po	ints: 4 E m	nd Semester Exam: 75 Marks (to be ma narks)	pped int	o 50
Objective	:			
1.	To construct models for object-oriented s	software development		
2.	To inspect different run time exception c	ases in a java programme		
3.	To comprehend and write java programmes with abstraction, code reusability and data security features			
4.	4. To plan concurrent processing scenarios with java multithread programming.			
Pre-Requ	iisite:			
1.	Programming for problem solving(ES(CS	S/IT)204)		
Module	Content		Hrs.	Marks
1	Introduction to Object Oriented Progr Object Oriented Programming language between Object Oriented Program programming languages, Object Oriented	ramming Concepts ge concepts & features, Comparison ming language and conventional d Modelling concepts.	2	
2	Introductory Concept of Java Program Advantages of Java, Data types & varial statements, constants, methods, Cor Overloading, Keyboard input operations and Creation of objects, Access spec variables, Constructors, Constructor of objects, Use of this keyword, Passing returning objects from a method, Neste string object with length(), equals() and Command Line Arguments, garbage coll	nming bles, Loops, Arrays, Operators, Control mpile time Polymorphism: Method s. Classes & Objects-Defining Classes cifiers, Instance variables and Static overloading, Static blocks, Array of objects as parameter to a method & ed classes & Inner classes concept of nd charAt() method of string object, lection.	10	

3	Inheritance and Polymorphism in Java	10		
	Concept of Inheritance, Super classes & Subclasses, Object Modelling in Java:			
	Generalization and Specialization, Constructor calling mechanism in			
	inheritance, Use of super keyword, Runtime Polymorphism: Method			
	Overriding. Use of static keyword in java. Abstract classes & Interfaces-			
	Concept of Abstract classes & Interfaces and their properties, use of final			
	keyword, Dynamic binding in abstract classes and interfaces, Inheritance of			
	interfaces, Nested Abstract classes & Nested Interfaces. Packages in Java-			
	Creation of packages, Importing packages, Member access rules in the aspect of			
	packages.			
4	Exception handling in Java	5		
	Basic concept of exception handling in Java, Different types of exception			
	classes, Concept of try and catch block, Concept of nested try block and			
	multiple catch blocks, throw and throws clause, Concept of finally block,			
	Creation of user defined exception classes.			
5	Multithreading in Java	6		
	Basic concept of multithreading, Concept of main thread and child thread,			
	Thread life cycle, Creation of multiple threads, Thread priorities, Thread			
	synchronization, Inter thread communication, Deadlocks, Suspending &			
	Resuming threads.			
6	Applet Programming in Java	3		
	Basics of applet programming, Applet life cycle, Differences between			
	application & applet programming, Parameter passing through applets, I/O			
	operations in applets.			

Learning Resources:

8			
1	Core Java Volume I — Fundamentals (9th Edition) by Cay S Horstmann and Gary Cornell		
2	Rambaugh, James Michael, Blaha, Object Oriented Modelling and Design, Prentice Hall, India		
3	Java: A Beginner's Guide by Herbert Schildt, Oracle Press.		
4	Head First Java by Kathy Sierra and Bert Bates		
5	Deitel and Deitel- "Java How to Program", Pearson Education.		
Course Outcomes:			
After completion of this course the students will be able to -			
CO1	Identify Object oriented programming features associated with object oriented modelling concepts		
	related to object-oriented software development.		
CO2	Apply various abstraction and code reusability features of java for more efficient and secure		
	coding along with dynamic resolving of polymorphic behaviours of the entity in combination with		
	java modular programming		
CO3	Implement inheritance, run time polymorphism and abstraction features of java in combination		
	with java modular programming		
CO4	Examine different run time or compile time exceptional cases that may occur in a java program.		
CO5	Organize different parallel processing scenarios with java multithread programming and make use		
	of them in web applications through java applet programming		

Name of the course	INFORMATION THEORY AND CODING
Course Code: PEC(IT)501 A	Semester: 5 th

Duration: 6 months		Maximum Marks: 100			
Teaching Scheme		Examination Scheme			
Theory: 3 hrs./week		Mid Term I: 15 Marks			
Credit Points: 3		Mid Term II: 15 Marks			
		Assignment, Test based on assignments, Surprise tests,			
		Quizzes, Presentations, etc. : 20 Marks			
		End Semester Exam: 50 Marks			
Objective	es :				
1.	To understand basic Information The	ory.			
2.	To apply information theory for unde	rstanding channel performance.			
3.	To learn different error detection and	correction codes.			
Pre-Requ	usites :				
1.	Mathematics II [BS(CS/IT)205]				
2.	Communication Engineering [ES(CS	/IT)409]			
Module	Content	· •	Hrs.	Marks	
1	Information Theory :		4		
	Review of probability theory, Unce	rtainty and Information, Self and Mutual			
	Information, Entropy, Mathematical Properties of the Entropy Function.				
2	Source Coding Theorem :		6		
	Entropy and Coding, Shannon-Fano Coding, Variable-Length Codes: Unique				
	Decoding, Instantaneous Codes, Construction of Instantaneous Codes, Prefix				
2	tree for prefix code, The Kraft Inequa	llity, Huffman codes.	5		
5	Channel Capacity and Coding : Channel models, channel capacity, channel coding, and information, capacity				
	theorems. The Shannon limit.				
4	Error Control Coding :		11		
	Introduction, Matrix description of linear block codes, parity check matrix,				
	Encoding and decoding of Linear Block-codes, Syndrome Decoding, Hamming				
	Codes.				
	Cyclic Codes, Polynomials, Method for generating Cyclic Codes, Matrix				
5	BCH Codes :				
	Properties of BCH codes, minimal	polynomials, generator polynomials, check			
	polynomials, examples of BCH codes	s, Reed Solomon Code.			
6	Convolutional Codes :		5		
	Introduction, Polynomial description	on of Convolutional Codes, Generating			
	function, Matrix description of Co	onvolutional Codes, Viterbi Decoding of			
Convolutional codes, Trellis codes.					
Course Outcomes:					
CO1	Define the basic notions of information	on and channel capacity.			
CO2	Explain the properties of various erro	r control code.			
CO2	Apply information theory to explain	hannel performance			
0.05		inamor portormanoe.			

CO4	Implement linear block codes and cyclic codes for error detection and correction	
CO5	Design BCH & Convolution codes for the improvement of Channel performance against burst	
	errors.	
Learning Resources:		
1.	Information theory, coding and cryptography - Ranjan Bose; TMH.	
2.	Introduction to Error Control Codes – S Gravano; Oxford.	
3.	Coding and Information Theory – R. W. Hamming; Prentice Hall.	
4.	Information and Coding Theory - G. A. Jones and J. M. Jones ; Springer – Verlag.	
5.	Essentials of Error-Control Coding – Jorge C. Moreira and Patrick G Farrell; Wiley.	

Name of the course		Computer Graphics			
Course Code: PEC(CS/IT)501B		emester: 5 th			
Duration	: 6 months N	Aaximum Marks: 100			
Teaching	; Scheme E	Examination Scheme			
Theory:	3 hrs/week N	Mid Semester Exams: 30 Marks			
Credit Po	ints: 3 A	Assignment, Quiz etc. : 20 Marks			
		End Semester Exam: 75 Marks (to be mapped into 50 marks)			
Objective	e:				
1.	To understand the basic concepts of v software.	various elements of graphics systems	and un	derlaying	
2.	To understand different scan conversion algorithm and curve generating algorithm to generate graphics on graphics systems.				
3.	To comprehend various transformation techniques and apply the same on 2D and 3D graphics.				
4.	To describe various color models and lighting conditions.				
5.	To understand various clipping and surface	ce removal techniques.			
Pre-Requ	iisite:				
1.	Mathematics-I(BS(CS/IT)-101)				
2.	Discrete Mathematics(BS(CS/IT)-408)				
Module	Content		Hrs.	Marks	
1	Introduction to Computer Graphics &	Graphics Systems	4		
	Overview of CG, definitions of CG, types of CG, storage tubes display, CRT				
2	scan Conversion		4		
	Points & lines. Line drawing algorithm	ns: DDA algorithm, Bresenham's line	-		
	algorithm. Circle generating algorithm: Ellipse generating algorithm: scan line				
	polygon, fill algorithm, boundary fill algo	orithm, flood fill algorithm.			
3	2D Transformation		6		
	Basic transformations: translation, rotati	ion, scaling; Matrix representations &			
	homogeneous coordinates, transformation	tions between coordinate systems;			
	reflection shear; Transformation of poi	ints, lines, parallel lines, intersecting			
	lines.				
-----------	---	-------------	----	--	
4	Viewing	4			
	Viewing pipeline, Window to Viewport co-ordinate transformation, clipping				
	operations, point clipping, line clipping, clipping circles, polygons & ellipse.				
5	3D Transformation & Viewing	6			
	3D transformations: translation, rotation, scaling & other transformations.				
	Rotation about an arbitrary axis in space, reflection through an arbitrary plane;				
	general parallel projection transformation; clipping, Viewport clipping, 3D				
	viewing, perspectives & Depth Cueing.				
6	Curves and Fractals	4			
	Curve representation, surfaces, designs, Bezier curves, B-spline curves, end				
	conditions for periodic B-spline curves, rational B-spline curves.				
7	Hidden Surfaces	4			
	Depth comparison, Z-buffer algorithm, Back face detection, BSP tree method,				
	the Printer's algorithm, scan-line algorithm; Hidden line elimination, wire				
0	Irame methods, Iractal - geometry.	4			
8	Color & Shading Models	4			
	Introduction, Modeling Light Intensities and Sources, Diffuse Reflection,				
	Lambert's Cosine Law, Specular Kellection, Halitoning, Color Models - RGB				
Looming	Pasaumaan				
Learning					
1	Computer Graphics (C version) – Hearn D, Baker M P, Pearson.				
2	Computer Graphics – A programming Approach– Harrington, Steven; McGraw Hill				
3	Computer Graphics – principles and practice - Foley, Van Dam, Feiner and Huge	es; Pearson	n.		
4	Computer Graphics, Multimedia and Animation – Pakhira Malay K ; PHI Learni	ng Pvt. Lt	d.		
Course O	utcomes:				
After com	pletion of this course the students will be able to -				
CO1	Explain basic working principle of graphics systems and hardware.				
CO2	Develop programs to implement drawing, filling and clipping algorithms and solve transformation				
	and clipping problems.				
CO3	Identify the curves and make use of fractal geometry.				
CO4	Examine operations on 3D graphics system and solve the problems of hidden surface removal on				
	3D graphic systems.				
CO5	Identify various colour, light, material and shadow models.				

Name of the course	Advanced Computer Architecture
Course Code: PEC(CS/IT)501C	Semester: 5 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme:	Examination Scheme
Theory: 3 hrs/week	Mid Term I: 15 Marks
Credit Points: 3	Mid Term II: 15 Marks
	Assignments, Test based on assignments, Surprise tests, Quizzes, Presentations, Attendance etc. : 20 Marks

	End Semester Exam: 50 Marks			
Objective	*			
1.	To make students know about the Parallelism concepts in Programming			
2.	To give the students an elaborate idea about the different memory systems and buses.			
3.	To introduce the advanced processor architectures to the students.			
4.	To make the students know about the importance of multiprocessor and multicom	puters.		
5.	To study about data flow computer architectures.			
Pre-Requ	isite:			
1.	Principles of digital electronics			
2.	Microprocessor & Microcontroller			
3.	Web Technology			
Module	Content	Hrs.	Marks	
1	Module 1: Introduction to High Performance Computing Pipeline Processing : Pipeline Performance, design of arithmetic pipelines Pipeline hazards – structural hazards, data hazards, control hazards & their solutions Pipeline scheduling Theory: Greedy pipeline scheduling algorithm – Static and Dynamic Pipelining. Parallel Processing, Taxonomy of Parallel Architectures : 1) SISD, 2) SIMD, 3) MIMD, 4) MISD, Amdahl's Law and parallel speed up.	12		
2	Module2: RISC architecture, RISC VS CISC, VLIW architecture Vector and Array Processors, Super-scalar machines,Distributed computing architectures, Data flow architectures.	7		
3	Module3: Interfacing : Peripheral interfacing, Interfacing a microprocessor with memory and various I/O controllers.	5		
4	Module4: Advanced Memory Technology : SRAM, SDRAM, Flash memory, Dual port memory, Cache memory. Memory interleaving, virtual memory.	8		
5	Module5: Introduction to FPGA and Reconfigurable architecture.	4		
Learning	Resources:		1	
1	M. R. Bhujade, "Parallel Computing", Newage International Pvt. Ltd., 1995.			
2	Stallings William, "Computer organization and architecture, designing for performance Hall of India, 1997	mance",	Prentice	
3	J. L. Hennessy and D. A. Patterson, "Computer architecture: a quantitative app Asia, Singapore 1996	oroach",	Harcourt	
4	Hwang and Briggs, —Computer Architecture and Parallel Processingl, TMH.			
5	Hayes, —Computer Architecture and Organization ^{II} , McGraw-Hill.			
6	Hwang, —Advanced Computer Architecturel, McGraw-Hill.			
7	Kain, —Advanced Computer Architecture: a system Design approachl, PHI.			
8	Flynn, —Computer Architecturel, New Age Computer Network			
9	Parhami – Computer Architecture, Oxford University Press			
Course Outcomes:				
After successful completion of this course students will be able to-				

CO1	Demonstrate concepts of parallelism in hardware/software.
CO2	Discuss memory organization and mapping techniques.
CO3	Describe architectural features of advanced processors.
CO4	Interpret performance of different pipelined processors.
CO5	Explain data flow in arithmetic algorithms
CO6	Development of software to solve computationally intensive problems.

Name of the courseComputational Geometry				
Course Code: PEC(IT)501D		Semester: 5 th		
Duration: 6 months Maximum Marks: 10		Maximum Marks: 100		
Teaching Scheme Examination Scheme				
Theory:	3 hrs./week	Mid Term I: 15 Marks		
Credit P	oints: 3	Mid Term II: 15 Marks		
Assignment, Test based on assignment		its, Surp	rise tests,	
		Quizzes, Presentations, Attendance etc. :	20 Ma	arks
		End Semester Exam: 50 Marks		
Objectiv	es :			
1.	To implement convex hull, triangulati	on, and closest pair algorithms		
2.	To understand and apply Voronoi diag	grams		
3.	To assess various data structures associated with range queries.			
4 To apply visibility and robot motion planning algorithms.				
Pre-Req	Pre-Requisites :			
1.	Data structure and Algorithms [PC(CS/IT)302]			
2.	Design and Analysis of Algorithm [PC	C(CS/IT)406]		
Module	Content		Hrs.	Marks
1	Introduction to Geometric prelimit	naries and Convex Hull: Introduction,	10	
	Geometric preliminaries. Convex Hull	s: Convex Hull Algorithms in the Plane -		
	Graham's Scan Algorithm, Jarvi's N	March, Divide and Conquer Algorithm.		
	Line Segment Intersection (using p	lane sweep), Doubly linked edge list,		
	Overlay subdivisions. Triangulations	: Polygon Triangulation (Triangulating		
2	Woronoi diagram: Algorithma, alagos	t pair problems, Delaunay triangulations:	7	
2	algorithms (divide-and-conquer fli	n incremental) duality of Voronoi	/	
	diagrams properties (min-max angle)			
3	Searching: Orthogonal Search: Geometric data structures: Range search			
	(Quad-tree, kd-tree), Improvements on range searching (Range tree, fractional			
	cascading), Inverse Range Search (Segment tree, interval tree, priority search			
	tree)			
	Geometric searching: point-location,	2d linear programming with prune and		
	search.			
4	Visibility: Algorithms for weak and st	rong visibility, visibility with reflections,	6	1

	art-gallery problems.			
	Arrangements: Zones (Duality, line arrangements; many-faces complexity,			
	incremental algorithm, zone theorem), algorithms.			
5	Robot Motion Planning: Geometric Applications: Robot Motion Planning	4		
	(Trapezoidal Maps, point robots, Translational Motion Planning), Computing			
	the Visibility Graph.			
Learning	Resources:			
1	M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:			
	Algorithms and Applications. Springer-Verlag, 2nd edition, 2000.			
2	Franco P. Preparata and Michael Ian Shamos, Computational geometry: An Introduction, 1 st			
	edition, Springer-Verlag New York.			
Course C	Outcomes:			
After suc	cessful completion of this course students will be able to-			
CO1	Implement Convex hulls, line segment, and triangulation algorithms			
CO2	Illustrate Voronoi diagrams, Delaunay triangulation, and closest pair of points.			
CO3	Identify appropriate Range Search data structures for various range queries.			
CO4	Identify appropriate Range Search data structures for various range queries.			
CO5	Devise various Robot motion planning algorithms.			

Name of the course: Constitution of		Constitution of Indian		
Course Code: MC(CS/IT)502		Semester: 5 th		
Duration: 6 months		Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory C	ontact Hrs.: 1 hrs/week	Mid Semester-1 Exam: 15 Marks		
Tutorial C	Contact Hrs.: 1 hrs./week	Mid Semester-2 Exam: 15 Marks		
Credit Po	int:	Assignment, Quiz & class attendance: 20	Marks	
		End Semester Exam: 75 Marks (to be marks)	e mappe	d into 50
Objective:				
1.	To understand the structure of the Indian Constitution.			
2.	To learn about the Nature-Specialty and Proposal Of Indian Constitution.			
3.	To Describe the Centre- State relationship and the role of government administration.			
4.	To gain knowledge about the Indian Ju	urisdiction and conceptualization of social	reforms	that lead
	to revolution in India.			
Pre-Requ	usite:			
1.	Constitution of India(MC(CS/IT)502[F	PC (CS/IT)-513])		
Module	odule Content Hrs. Ma			Marks
1	Indian Constitution:		05	
	Sources and constitutional history, Fea	tures: Citizenship, Preamble.		
2	Fundamental Rights & Duties:		05	
	Fundamental Rights, Right On: Eq	uality, Freedom, Against Exploitation,		
	Freedom of Religion, Cultural a	and Educational Rights, Constitutional		

	Remedies. Directive Principles of State Policy. Fundamental Duties.				
3	Structure of the Indian Union and its administration: Structure of the Indian Union: Federalism, Centre- State relationship, President:	08			
	Role, power and position, PM and Council of ministerrs, Cabinet and Central				
	Secretariat, Lok Sabha, Rajya Sabha. State government and its administration:				
	Governor: Role and Position, CM and Council of ministers, State Secretariat:				
	Organisation, Structure and Functions.	0.6			
4	Jurisdiction:	06			
	Supreme court: Organization of supreme court, procedure, jurisdiction and				
	power of the supreme court. High court. Organization of high court, procedure,				
	provision structure and jurisdiction National legal services authority gram				
	nyayalays Public interest litigation (PIL): meaning of PIL features scope				
	principle, guidelines for admitting PIL.				
5	Local Administration:	05			
	District's Administration head: Role and Importance, Municipalities:				
	Introduction, Mayor and role of Elected Representative, CEO of Municipal				
	Corporation, Pachayati raj: Introduction, PRI: ZilaPachayat, Elected officials				
	and their roles, CEO ZilaPachayat: Position and role, Block level:				
	Organizational Hierarchy (Different departments), Village level: Role of				
	Elected and Appointed officials, Importance of grass root democracy.				
Course C	After completion of the course students will able to -				
	explain about different features of Indian constitution				
	identify the newer and functioning of Union state and local self government				
	identify the power and functioning of Union, state and local self-government.				
03	explain about jurisdiction and function of Indian Judiciary.				
CO4	applying the authority to redress a problem in the profession and in the society.				
CO5	using the basics of PIL and guideline for admission of PIL along with the functioning of local				
	administration starting from block to municipal Corporation.	. · · · ·	1 (1		
C06	demonstrate the intellectual origins of the framework of argument th	at inform	ned the		
Loorning	conceptualization of social reforms leading to revolution in India.				
1.	Indian polity, M, Laxmikanth, MC Graw Hill education, 5th Edition.				
2.	Indian Constitution, M P Jain, 8 Edition.				
3.	Indian Constitution and Administration,Latika Shekhar.				
4.	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.				
5.	Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, Corporation.	, 2015. m	nunicipal		

Name of the course	Operating System Lab
Course Code:	Semester: 5 th
Duration: 6 months	Maximum marks:100
Teaching Scheme	Examination scheme:

Theory: 1	Nil	Attendance: 10 marks
Tutorial: Nil		Preparation of Lab Report: 30 marks
Practical: 3 hrs/week		Experimental data/ Precision of work done: 30 marks
Credit Po	ints:1.5	Presentation / analysis of the result: 30 marks
		Viva voce: 20 marks
Module	Content	·
1.	Familiarization of Linux Commands.	
2.	Shell in UNIX. Different types of Shel	l in UNIX.
	Creating a bash shell script, making a script executable, shell syntax (variables, conditions, control structures, functions, commands).	
3.	Implementation of CPU scheduling algorithms.	
4.	Implementation of classical problems in process synchronization.	
5.	Implementation of deadlock handling techniques.	
6.	Implementation of memory management techniques.	
7.	Operations on Processes, signals, Pipes and system calls.	
Course C	outcomes:	
After con	pletion of the course students will able	to -
CO1	Review commands in UNIX.	
CO2	Write programs using shell scripts.	
CO3	Implement different process managem	ent mechanisms.
CO4	Implement different memory manager	nent techniques.
CO5	Evaluate different system managemen	t mechanisms.
Learning	Resources:	
1	Linux Command Line and Shell Scrip	ting Bible- Christine Bresnahan and Richard BLUM- Wiley
	India	
2	Linux Administration: The Linux Op	erating System and Command Line Guide- Jason Cannon-
	CreateSpace Independent Publishing F	Platform
3	Mastering Linux Administration- Alexandru Calcatinge, Julian Balog Packt	

Name of	the course	DATABASE MANAGEMENT SYSTEM LAB
Course C	Code: PCL(CS/IT)515	Semester: 5th
Duration: 6 months		Maximum Marks: 100
Teaching	g Scheme	Examination Scheme, Total Marks: 100
Theory:	Nil	Attendance : 10
Tutorial:	Nil	Preparation of Lab Report : 30
Practical:	3 hrs./week	Experimental data/ Precision of work done : 30
Credit Po	ints: 1.5	Presentation/ analysis of the result : 10
		Viva Voce: 20
Objectiv	e:	
1.	Describe the basics of SQL	

2.	Construct queries using SQL				
3.	Demonstrate the use of constraints				
4.	Implement PL/SQL Concepts and Constructs				
Pre-Req	uisite				
1.	Programming for Problem Solving Laboratory ESL(CS/IT)205				
2.	Discrete Mathematics BS(CS/IT)408				
Module	Content Hrs. Marks				
1.	Structured Query Language: Creating a Database, Creating a Table, Specifying Relational Data Types, Specifying Constraints, Creating Indexes	03			
2.	Table and Record Handling: INSERT statement, INSERT INTO SELECT statement, DELETE, UPDATE, TRUNCATE statements, DROP, ALTER statements	06			
3.	Retrieving Data from a Database: The SELECT statement, Using the WHERE09clause, Using Logical Operators in the WHERE clause, Using IN, BETWEEN,109LIKE, ORDER BY, GROUP BY and HAVING Clause, Using Aggregate109Functions, Combining Tables using JOINS, Sub queries109				
4.	Database Management: Creating Views, Creating Column Aliases, Creating Database Users, Using GRANT and REVOKE	06			
5.	PL/SQL Concepts and Constructs: Introduction Of PL/SQL, Structure of basic PL/SQL Structure, Conditional statements, Basic loops, Cursors in Oracle PL/SQL	06			
Course (Dutcome:				
After con	npletion of this course the students will be able to -				
CO2	Manipulate Tables and Records				
CO3	Compose queries to retrieve data from a Database				
CO4	Facilitate the management of a Database				
CO5 Implement conditional statements, basic loops and cursors in PL/SQL					
Learning Resources:					
1	Ivan Bayross, SQL, PL/SQL the Programming Language of Oracle, BPB Publications, ISBN: 9788176569644				
2	Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Database System Concepts, McGraw-Hill, ISBN: 9789332901384				

Name of the course	Programming Lab Using Java
Course Code: PCL(CS/IT)516	Semester: 5 st
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Assignments and Quiz: 100 Marks
Credit Points: 1.5	
Objective:	· ·

1.	To construct models for object-oriented software development				
2.	To handle different run time exception cases in a java programme				
3.	To write java programmes with abstraction, code reusability and data security features				
4.	To plan concurrent processing scenarios with java multithread programming.				
Pre-Requ	iisite:				
1.					
Module	Content	Hrs.	Marks		
1	Programming with java classes involving data members having various access				
	protection, class methods, constructors, overloading features, this and final				
	keyword, static block, static variables and methods.				
2	Use of array of objects, passing of object in method and returning of object				
	form method, use of string handling functions- length (), equals (), charAt(),				
-	keyboard input operations, command line arguments.				
3	Program implementation for nested/inner classes, name conflict resolving for				
4	Inner and outer classes.				
4	interfaces in a single class extending multiple interfaces within a single				
	interface combined inheritance of both abstract class and interface. Use of				
	dynamic method dispatch for abstract class and interface implementation.				
5	Implementation of nested abstract class and interface combinations. Resolving				
	name conflict scenarios for the combined inheritance of abstract class and				
	interface.				
6	Designing program modules with creation and accessing of packages.				
7	Handling exception with try, catch and finally. Adoption of throw, throws and				
	user defined exception.				
8	Program writing for creation of multiple threads, thread synchronization, inter				
0	Applet program execution with I/O operation use of repoint () method				
Jeanning	Pagewage				
Learning		G 1	1		
1	Core Java Volume I — Fundamentals (9th Edition) by Cay S Horstmann and Ga	ary Cornel	1		
2	Harvey Deitel and Paul Deitel, Java How to Program, Early Objects, Global Edi Education, ISBN-13: 9781292223902	tion, Pears	son		
3	Java: A Beginner's Guide by Herbert Schildt, Oracle Press.				
4	Head First Java by Kathy Sierra and Bert Bates				
5	Deitel and Deitel- "Java How to Program", Pearson Education.				
Course C	Outcomes:				
After con	pletion of this course the students will be able to -				
CO1	Implement java programs with data protection, method overloading, object inde	pendent cl	ass		
	member accessing features and string handling operations.				
CO2	Demonstrate nested structuring of java classes and their name conflict resolving	issues			
CO3	Implement inheritance, run time polymorphism and abstraction features of java	in combin	ation		
	with java modular programming				

CO4	Solve different run time and user inducted exception cases in the java program
CO5	Organize parallel processing scenarios with java multithread programming and incorporate them in
	web applications through java applet programming

THIRD YEAR SECOND SEMESTER

6 th SEMESTER							
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRS./WEEK	CREDIT
THE	ORY						
01	PC(CS/IT)617	Computer Networks	3	1	0	4	4
02	PC(CS/IT)618	Compiler Design	3	0	0	3	3
03	PEC(IT)602	Elective-II	3	0	0	3	3
04	OEC(IT/CS)601	Open Elective-I	3	0	0	3	3
05	HS(CS/IT)604	Industrial Management (Organizational Behavior/ Finance & Accounting	3	0	0	3	3
SESS	SIONAL/PRACTI	CAL					
01	PCL(CS/IT)619	Computer Network lab	0	0	3	3	1.5
02	PROJ(IT)601	Project 1	0	0	6	6	3
03	CLA(IT)-6	Comprehensive Laboratory Assessment	0	0	0	0	1
TOTAL		15	1	9	25	21.5	

PEC(IT)602

- A: Software Engineering
- B: Cryptography and Network Security
- C: Multimedia Systems
- D: Wireless Communication

OEC(IT/CS)601

- A: Optimization Techniques
- **B:** Digital Communication
- C: Cyber Law and Security Policy
- D: Control System

Name of the course		Computer Network		
Course Code: PC(CS/IT)617		Semester: 6 th		
Duration	: 6 months	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3	3 hrs/week	Two Mid term Exam: 30 Marks		
Tutorial:	l hours/week	Assignment & Quiz: 10 Marks		
Practical:		Term paper: 05 Marks		
Credit Po	ints: 4	Presentation on selected topics: 05 Mar	ks	
		End Semester Exam: 50 Marks		
Objective	:	I		
1.	To study the concept of computer netw	vork and protocol suite		
2.	To study Physical and data link layer a	and related hardware and protocol		
3.	To study network layer, routing protoc	cols, IP addressing		
4.	To study transport layer, TCP and soc	:ket		
5.	To study Application layer and networ	rk security		
Pre-Requ	isite			
1.				
Module	Content		Hrs.	Marks
1	Introduction: Overview of Data C	ommunication and Networking; Layered	4	7
	Network Architecture; Mode of con	nmunication, topology, Data and Signal;		
	Transmission Media: Guided, Ungui	ded, categories of network (LAN, MAN,		
	WAN); Internet: brief history, Protoc	ols and standards; Reference models: OSI		
	reference model, TCP/IP reference mo	odel, their comparative study.		
2	Physical Layer: Transmission Mec	lia: Guided, Unguided; switching: time	4	10
	division & space division switch,	TDM bus, Banyan switch; MODEM,		
2	Repeater and hub, Multiplexing: IDM	I, FDM, SDM, WDM.	0	20
3	Data link Layer: Medium Access s	sub layer: MAC address and LLC; Error	8	20
	correction: Flow control: Protocols:	Stop & wait ARO Go-Back- N ARO		
	Selective repeat ARO HDLC: Point t	o Point Protocol LCP NCP Token Ring.		
	Access mechanism: Reservation. P	olling. Random access: Pure ALOHA.		
	Slotted ALOHA, CSMA, CSMA/CI	D, CSMA/CA, TDMA, FDMA, CDMA,		
	Traditional Ethernet, fast Ethernet.			
4	Network layer: Internetworking &	& devices: Bridges, Switches, Router,	10	20
	Gateway; Addressing: IP addressing	g (IPV4, IPv6), masking, Classful and		
	Classless Addressing, Subnetting, N	AT; Routing : Intra and Inter Domain		
	Routing, Unicast, Multicast Broadc	ast routing. static vs. dynamic routing,		
	Unicast Routing Protocols: RIP, OSPI	F, BGP; Other Protocols: ARP and RARP,		
	IP, ICMP, IPV6; Mapping between	IP and MAC address: ARP & RARP		
	Switching Communication Network	s: Circuit switching; Packet switching;		
	Routing in packet switched networks;	X.25; Frame Relay; ATM, SONET.		

5	Transport layer : Process to Process delivery; UDP; TCP, Features, Segment,	8	17		
	Three-Way Handshaking, socket and port addressing, Flow Control, Error				
	Control, Congestion Control: Open Loop, Closed Loop, choke packets; Quality				
	of service: techniques to improve QoS: Leaky bucket algorithm, Token bucket				
	algorithm.				
6	Application Layer : Introduction to DNS, SMTP, SNMP, FTP, HTTP &	5	10		
	WWW;				
7	Security: Attacks, Cryptography, Firewalls, IDS & IPS, Malware, IP and	3	10		
	transport layer security, DMZ.				
8	Modern topics: ISDN services & ATM, DSL technology, Wireless LAN,	2	6		
	Bluetooth, VPN.				
Course C	Dutcomes:		1		
After con	npletion of the course students will able to -				
CO1	Investigate two protocol suits and different topologies, transmission media of computer network				
CO2	Investigate different random and controlled access mechanism, flow and error control				
CO3	Asses different routing models for computer network and IP addressing				
CO4	Asses quality of services (Qos) in Transport layer and services using client server paradigm.				
CO5	Investigate different security protocols and different encryption mechanism				
CO6	solution of Real life problems for designing IP addressing of net and subnet of network cluster				
Learning	Resources:				
1.	B. A. Forouzan – "Data Communications and Networking (3rd Ed.) " – TMH				
2.	A. S. Tanenbaum – "Computer Networks (4th Ed.)" – Pearson Education/PHI				
3.	W. Stallings – "Data and Computer Communications (5th Ed.)" – PHI/ Pearson E	ducation	l		
4.	Black, Data & Computer Communication, PHI				
5.	Kurose and Rose - "Computer networking -A top down approach featuring the in	ternet" –	- Pearson		
	Education				

Name of	the course	Software Engineering			
Course C	ode: PEC(IT)602A	Semester: 6 th			
Duration: 6 months		Maximum Marks: 100			
Teaching Scheme		Examination Scheme			
Theory:	3 hrs/week	Mid Term I Exam:	15 Marks		
Credit Points: 3		Mid Term II Exam:	15 Marks		
		Class performance & Attendance:	20 Marks		
		End Semester Exam & Viva:	50 Marks		
Objective	:				
1.	To understand different software proc	ess models.			
2.	To analyze software testing activities.				
3.	To determine software reliability and	quality.			
4.	To assess different tools for software	project management.			
Pre-Requ	isite:				

1.	Data Structures & Algorithms -PC(CS/IT)302		
2.	Mathematics III-BS(CS/IT)307		
Module	Content	Hrs.	Marks
1	Information System:	6	
	Software Engineering –Objectives, Definitions, Software development life cycle,		
	Software Process models - Waterfall Model, Spiral model, Agile model.		
	Software Requirements (SRS), Feasibility Analysis.		
2	Software Design:	4	
	Context diagram and DFD, Physical and Logical DFDs, Data Dictionary, ER		
2	diagrams, Decision tree, decision table and Structure chart, Structured English.	10	
5	Soliware resung: Levels of Testing White box and Black box Testing Test Case Generation	10	
	Accentance Testing Software Validation Regression Testing Mutation		
	Analysis Cyclomatic complexity		
4	Reliability:	4	
	Reliability concept, Software Reliability, Hazard, MTTF, MTBF, Repair and		
	Availability.		
5	Software Quality:	4	
	Quality attributes, Risk Management, McCall's quality factors, Software Quality		
	Assurance, quality standards, Total Quality Management.		
6	Software Project Management:	8	
	Software Project Planning, Project Scheduling, Software Configuration		
	Management, Cost estimation-COCOMO, function point analysis, Halstead		
	Method		
Course			
After cor	and the course students will able to -		
CO1	Select different software development process models.		
CO2	Develop the software architecture/design using design tools.		
CO3	Apply different testing and debugging techniques.		
CO4	Analyze software risks, reliability and failure.		
CO5	Determine the concept software quality.		
CO6	Implement different tools for software project management.		
Learning	Resources:		
1	Software Engineering: A practitioner's approach-R.G. Pressman (TMH)		
2	Software Engineering- I. SomerVille(Pearson Education)		
3	Software Engineering- Rajib Mall (PHI)		
4	Software Engineering – Agarwal and Agarwal (PHI)		
5	Software Engineering- Pankaj Jalote (Wiley-India)		
6	Fundamentals of Software Engineering- C. Ghezzi, M. Jazayeri and D. Mandrioli(I	PHI)	
7	Software Engineering Fundamentals- Behforooz(OUP)		

Name of the course Cryptography and Network Security				
Course Code: PEC(IT)602BSemester: 6th				
Duration	: 6 months	Maximum Marks: 100		
Teaching	Teaching Scheme Examination Scheme			
Theory: 3	3 hrs./week	Mid Term I: 15 Marks		
Credit Po	oints: 3	Mid Term II: 15 Marks		
		Assignment, Test based on assignments, S Quizzes, Presentations, Attendance etc. :	burprise t 20 Ma	ests, rks
Objective	:	End Semester Exam: 50 Marks		
1.	To learn the main concepts of cryptog	raphy, its services and classical encryption	techniau	es.
2.	To understand the block ciphers conce	ept. Festal structure and symmetric key cryp	tography	· · · ·
3.	To study the number theory and basic	principles of public key cryptosystems.	812	
4.	To study Message Authentication Coo	les and Digital Signature		
5.	To learn Key distribution problem. Ke	erberos, remote user authentication		
6.	To study the concept of security assoc	tiation. System security and Web security.		
Pre-Reau	isite			
1.	Computer Network (PC(CS/IT)617)			
Module	Content		Hrs	Marks
1	Introduction: Overview Need for S	ecurity attacks services and mechanism	4	IVIAI INS
1	introduction to cryptography. Con	nventional encryption model, classical		
	encryption techniques- substitution	ciphers and transposition ciphers, stream		
	and block ciphers, Cryptanalysis, Steg	ganography.		
2	Symmetric key Cryptography: Blo	ck Cipher principle, Feistel structure, The	8	
	Data Encryption Standard, Strength of	of DES, Triple DES, Block Cipher modes		
	AES	decryption, RC5 algorithm, Overview of		
3	Asymmetric key Cryptography:	Principles of Public key Cryptography	8	
	Systems, Knapsack Cryptosystem. I	Euler's Totient Function, Fermat's Little		
	Theorem, Euler's Theorem, Ex	xtended Euclidean Algorithm. RSA		
-	Cryptosystem. Elliptic curve cryptogr	aphy.	-	
4	Message Authentication and Hash	Function: Authentication requirements,	5	
	SHA 1(algorithm) birthday attacks	Digital Signatures and digital signature		
	standards (DSS).	Digital Signatures and digital signature		
5	Key Management and Security pro-	otocols: Key Distribution Centre, Diffie-	5	
	Hellman Key Agreement, Man in the	middle attack.		
	Network Authentication Protocol: K	erberos. Certificate based Authentication-		
	X.509. Electronic moil convritor Protty Cood	Drive ever S/MIME		
6	System Security: IP Security: From	rilvacy, S/MIMIE.	6	
	TLS, Secure Electronic Transaction.	and the second s	0	
	Firewalls: Packet filters, Application-	Level Gateway, Encrypted tunnels.		

Learning	Resources:		
1	Behrouz A. Forouzan, Cryptography and Network Security, Tata McGraw-Hill. 2010		
2	William Stallings, Cryptography and Network Security, Pearson Education, 2014		
3	Charlie Kaufman, Radia Perlman, Mike Speciner, Network Security, PHI, 2002		
4	Johannes A. Buchmann, Introduction to Cryptography, Springer-Verlag.		
5	Atul Kahate, Cryptography & Network Security, TMH.		
6	B. Schneier, Applied Cryptography, Protocols, Algorithms, and Source Code in C, 2nd Edn,		
	Wiley, 1995.		
Course Outcomes:			
After com	pletion of this course students will be able to-		
CO1	Explain the services of cryptography and various classical encryption techniques.		
CO2	Illustrate Feistel structure and write Symmetric key cryptographic algorithms.		
CO3	Explain number theory and Asymmetric key cryptographic algorithms.		
CO4	Apply Cryptographic Hash Functions and verify messages using well known signature generation		
	techniques.		
CO5	Analyse Key Management, Authentication and Email Security.		
CO6	Evaluate Security Association, Transport Layer and Application layer Security.		

Name of the course		Multimedia Systems		
Course C	ode: PEC(IT/CS) 602C	Semester: 6 th		
Duration	: 6 months	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3	3 hrs./week	Two Mid term Exam: 30 Marks		
Credit Poi	ints: 3	Assignment & Quiz: 10 Marks		
		Term paper: 05 Marks		
		Presentation on selected topics: 05 Ma	ırks	
		End Semester Exam: 50 Marks		
Objective	:			
1.	To study the concept of multimedia			
2.	To study text, audio, computer graphic	s as components of multimedia		
3.	To study animation, image and video p	processing in multimedia		
4.	To study lossless and lossy compressio	on techniques		
5.	To study multimedia database			
Pre-Requ	isite:			
1.	Communication Engineering EC(CS/II	Г)409		
Module	Content		Hrs.	Marks
1	Introduction: : Multimedia Compo	onents and Structure, Hardware and	3	8
	Software Specifications, Application	Domains, uses of multimedia, Analog		
	and digital media, digitization, Visual	l Display Systems: Cathode Ray Tube,		
1	Liquid Crystal Display, Plasma Display	V		

2	Text: Types of Text, Font, ASCII Character Set, Unicode, File Formats, Text	3	10	
	compression, Text file format			
3	Audio: Concept of Sound, Components of audio systems, Data acquisition,	3	10	
	Sampling and Quantization, Audio file formats, Audio tools, Audio processing			
	software, MIDI	-	10	
4	Image: Image acquisition and representation, Colour models (Device	5	12	
5	Dependent and Device Independent), Image Processing, File Formats	2	10	
3	Graphics file formats. Eractals	3	10	
6	Animation: Principles of animation Computer based animation 3D	4	10	
0	animation. Rendering Algorithms, File format, Animation software		10	
7	Video: Video Frame, Frame Rate, Composite video signal NTSC, PAL and	4	10	
	SECAM Video Standards, Formats, Digital Video, Steps of Video Processing			
	and Software			
8	Compression: Lossy and Lossless Compression, Run Length encoding,	4	10	
	Huffman Encoding, Arithmetic Encoding, Differential Pulse Code Modulation,			
	JPEG image compression standard, MPEG video compression, H.261			
9	Synchronization: Intramedia and Intermedia Synchronization, Jitter, Skew,	4	8	
10	Delay, Error rate, Quality of Service		10	
10	Image and video Database: Image representation, segmentation, similarity	5	12	
	based retrieval, image retrieval by color, snape and texture; indexing- k-d			
	auerving video segmentation indexing			
Learning	Resources:			
1	Ralf Steinmetz and Klara Nahrstedt, Multimedia: Computing Communications & Applications			
	Pearson Ed.		iicuiiciis,	
2.	Parekh Ranjan, Principles of Multimedia, Mc Graw Hill. 3. Koegel Buford, Multimedia Systems,			
	Pearson Ed.			
3.	Ralf Steinmetz and Klara Nahrstedt, Multimedia Fundamentals: Vol. 1- Media C	oding and	l Content	
	Processing, PHI.			
4.	Nalin K. Sharda, Multimedia Information System, PHI.			
5.	J. Jeffcoate, Multimedia in Practice: Technology and Application, PHI.			
Course C	Outcomes:			
After con	npletion of this course students will be able to-			
CO1	Investigate different multimedia systems, components and applications			
CO2	Assess different multimedia components like text, audio, video and image.			
CO3	Design animation using multimedia knowledge			
CO4	Investigate colour model and conversion			
CO5	Apply computer graphics for multimedia			
CO6	Explore different database and their architecture used in multimedia			
CO 7	Design different multimedia applications			

Name of the course:		WIRELESS COMMUNICATION		
Course Code: PEC(IT)602D		Semester: 6 th		
Duration	uration: 6 months Maximum Marks: 100			
Teaching	g Scheme	Examination Scheme		
Theory C	ontact Hrs.: 3 hrs/week	Mid Semester-1 Exam: 15 Marks		
Tutorial (Contact Hrs.: Nil	Mid Semester-2 Exam: 15 Marks		
Credit Po	int: 3	Assignment, Quiz & class attendance: 20	Marks	
		End Semester Exam: 75 Marks (to be marks)	e mapped	1 into 50
Objectiv	e:			
1.	To analyze different communication to	echnologies used in wireless communication	n system	s.
2.	To study cellular communication syste	ems.		
3.	To study wireless local area networks			
4.	To compare different modern wireless	communication systems		
Pre-Req	uisite:			
1.	Communication Engineering(ES(CS/I	T)409)		
Module	Content		Hrs.	Marks
1.	Introduction to wireless communication and wireless network, Examples & 08 20 comparison of different wireless communication systems, Evolution of Mobile radio communication, Multiplexing, Modulation Techniques, Spread Spectrum modulation(EUSS_DSSS). Multiple access tasknigues(EDMA_TDMA_CDMA)			
2.	Cellular concept and architecture: GSI procedure, Authentication and security CDMA based cellular network	M Network Architecture, GSM call set up y, Routing of a call to a mobile subscriber.	10	30
3.	Fundamentals of Wireless Networks (WUAN transmission Technology, 802.11standard. Wireless Media Acco Carrier Sense Multiple Accesses w Wireless Access Protocol.	WLAN) WLAN system architecture, IEEE ess Control: Wireless Issues, ALOHA, ith Collision Avoidance, Mobile IP and	08	20
4.	Introduction to satellite communicati transponder, satellite link(uplink & down and the satellite link) and the satellite link and the sa	on, Satellite communication subsystems, wnlink)	04	10
5.	Recent advances in wireless c communication, Wireless Fidelity (W Bluetooth technology, Cognitive Radio	communication: Wide Band (UWB) i-Fi) systems; Wireless Sensor networks, o Network	06	20
Course C	Dutcomes:			
After con	apply the basic concepts of communic	be able to -	ss comm	unication
	system.	ation Engineering to study different wildles	55 0011111	amoatiOII
CO2	apply the basic knowledge of compute	r networks for analysis of mobile communi	cation ne	tworks
CO3	explain the satellite communication ne	twork and the link parameters		
CO4	explain different modulation and m	nultiple access technologies applied to a	different	wireless
CO5	communication systems	aunication anatoms and their features		
005	analyze the evolution of modern comm	numeation systems and their features.		

Learning Resources:		
1.	T. S. Rappaport, "Wireless Communications: Principles & Practice," Prentice-Hall.	
2.	I.Saha Misra, "Wireless Communications and Networks, 3G and beyond" TMH.	
3.	W.Stallings, "Wireless Communications and Networks" PHI.	
4.	Satellite Communication – D.C Agarwal, Khanna Publications, 5th Ed	

Name of	ne of the course OPTIMIZATION TECHNIQUES			
Course C	Course Code: OEC(IT/CS)601 Semester: 6 th			
Duration	: 6 months	Maximum Marks: 100		
Teaching	g Scheme	Examination Scheme		
Theory:	3 hrs./week	Mid Term I: 15 Marks		
Credit Po	ints: 3	Mid Term II: 15 Marks		
		Assignments, Test based on assignments Quizzes, Presentations, Attendance etc.: 20	s, Surpr) Marks	ise tests, s
		End Semester Exam: 75 Marks (to be marks)	mapped	l into 50
Objectiv	e:			
1.	To understand the basic concepts of o	ptimization and solve linear programming pr	oblems.	
2.	To introduce the concept of game the	ory		
3.	To execute Johnson's algorithm to so	lve scheduling problem		
4.	To understand basic concept of queui	ng theory		
5.	To calculate project implementation time using both probabilistic and deterministic method.			1.
6.	To solve problems using dynamic pro	gramming method and non-linear programm	ing tech	niques.
Pre-Req	uisite:			
1.	Discrete Mathematics BS(CS/IT)408			
2.	Design & Analysis of Algorithm PC(CS/IT)406		
Module	Content		Hrs.	Marks
1	Introduction to Optimization & Lin	near Programming:	12	
	Historical Development, Engineering	application of Optimization, Classification		
	of optimization problems, Introducti	ion to linear programming, formulation of		
	linear programming model, Graphica	l method for solving LPPs with 2 variables,		
	Simplex method, Duality in Linea	ar Programming, Transportation problem,		
	Assignment problems.		-	
2	Game Theory:	ma Saddla Daint Mini May and Mayi Min	5	
	Theorems (statement only) and r	archlems Games without Saddle Point		
	Graphical Method. Principle of Domi	nance.		
3	Sequencing Models:		5	
-	Johnson's Rule and its logic, method	l of solution, Two machines and n jobs (no	-	
	passing), Three machines and n jobs	(no passing), Two jobs and m machines, n		
	jobs and m machines.			

4.	Queuing Theory:	4		
	Introduction; Basic Definitions and Notations, Axiomatic Derivation of the			
	Arrival & Departure (Poisson Queue), Poisson Queue Models: (M/M/1): (∞ /			
	FIFO) and (M/M/1: N / FIFO) and problems.			
5.	PERT/CPM:	5		
	Introduction to Network analysis, definition of a project, job and events, drawing			
	of arrow diagrams, Project management origin and use of PERT, origin and use			
	of CPM, Application of PERT and CPM, Project Network, Diagram			
	representation, Critical path calculation by network analysis and critical path			
	method (CPM), Determination of floats, Construction of time chart and resource			
6	labelling.	5		
0.	Dynamic Programming & Non-Linear Programming:	3		
	Basic Concepts, Bernman's optimizing principles, Dynamic programming			
	Direct search methods Fibonacci Search Method Golden section Search			
	Method			
Course C	Dutcomes:			
After con	apleting of the course, student will be able to-			
CO1	Solve LPP using different techniques.			
CO2	Apply various method to solve game problems.			
CO3	Solve different sequencing problems.			
CO4	Explain basic concept of queuing theory.			
CO5	Analyze project management problem using PERT and CPM.			
CO6	Apply dynamic programming and non-linear programming to solve various proble	ms.		
Learning	Resources:			
1.	S.S. Rao, "Engineering optimization: Theory and practice", New Age International (P) Limited,			
	ISBN : 9788122427233			
2.	H. A. Taha, "Operations Research", Pearson, ISBN: 9780134444017			
3.	Ghosh and Chakraborty, "Linear Programming and Theory of Games", Centra	ıl Book	Agency,	
	ISBN : 9780198538646			
4.	J. K. Sharma - "Operations Research", Macmillan Publishing Company, ISBN: 9	781403	931511	
5.	NVR Naidu, G Rajendra, T Krishna Rao, "Operations Research", I K Internat	tional F	Publishing	
	house, New Delhi, ISBN: 9789380578941			
6.	Kanti Swaroop — "Operations Research", Sultan Chand & Sons, ISBN: 9789351	610236	5	
7.	S.D.Sharma, "Operations Research", KedarnathRamanath& Co, ISBN: 9789380803388			
8.	A.M. Natarajan, P. Balasubramani and A. Tamilarasi - "Operations Research", Pearson, ISBN :			
	9/893325264/1	12151	()5(
9.	M. V. Durga Prasad – "Operations Research", CENGAGE Learning, ISBN : 9/88	5131516	5256	

Name of the course:	Digital Signal Processing
Course Code:OEC(IT/CS)702B	Semester: 7 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme

Theory Contact Hrs.: 3 hrs/week		Mid Semester-1 Exam: 15 Marks		
Tutorial C	Tutorial Contact Hrs.: 1 hrs./weekMid Semester-2 Exam: 15 Marks			
Credit Po	redit Point: 4 Assignment, Quiz & class attendance: 20 Marks			
		End Semester Exam: 75 Marks (to be marks)	mapped	l into 50
Objectiv	e:			
1.	To understand the properties of different	ent type of discrete time signals and systems		
2.	To apply different mathematical tools	for frequency domain analysis of discrete tin	ne signa	ıls.
3.	To design different types of digital fil	ters and compare their performances		
Pre-Requ	iisite:			
1.	Communication engineering (ES(CS/I	T)409)		
Module	Content		Hrs.	Marks
1	Discrete-time signals		4	
	Concept of discrete-time signal, ba sequences – periodic, energy, power complex exponentials, arithmetic oper	sic idea of sampling, sampling theorem, , unit-sample, unit-step, unit-ramp, real & rations on sequences.		
2	LTI Systems Definition, representation, impulse response, derivation for the output sequence, concept of convolution, graphical and analytical methods to compute convolution supported with examples and exercises, properties of convolution, stability and causality conditions			
3	Z-Transform Definition, mapping between s-plane ROC, properties of Z-transform, inver	and z-plane, unit circle, convergence and se Z-transform	6	
4	Discrete Fourier Transform Concept and relations for DFT/IDF computational burden on direct DF DFT/IDFT matrices, computation multiplication of DFTs, circular conv Overlap-Save and Overlap-Add method	T, Twiddle factors and their properties, T, DFT/IDFT as linear transformations, of DFT/IDFT by matrix method, volution, filtering of long data sequences – ods with examples and exercises.	9	
5	Fast Fourier Transform Radix-2 algorithm, decimation-in-time	e, decimation-in-frequency FFT algorithms.	5	
6	Digital Filter Basic concepts of IIR and FIR digit using impulse invariant and bilinear t using window method.	al filters. design of Butterworth IIR filter ransformation method, design of FIR filter	6	
Course C	Outcomes:			
After con	ppletion of this course the students will	be able to -		
CO1	compare the characteristics of differen	t discrete time signals and systems.		
CO2	describe Z transform of discrete time s	sequences and its properties.		
CO3	apply the concepts of sampling in frequency domain for computing DFT and IDFT of discrete time sequences.			
CO4	compare the performance of different	Fast Fourier Transform(FFT) techniques.		
CO5	design different types of Digital Filter	S.		

Learning	g Resources:
1.	Digital Signal Processing – Principles, Algorithms and Applications, J.G.Proakis&D.G.Manolakis,
	Pearson Ed.
2.	Digital Signal Processing, P. Rameshbabu, Scitech Publications (India)
3.	Digital Signal processing – A Computer Based Approach, S.K.Mitra, TMH Publishing Co
4.	Digital Signal Processing, S.Salivahanan, A.Vallabraj& C. Gnanapriya, TMH Publishing Co

Name of the course		Cyber Law and Security Policy		
Course Code: OEC(IT/CS)601C		Semester: 6 th		
Duration: 6 months		Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory:	3 hours/week	Mid Semester Exams: 30 Marks		
Credit Po	ints: 3	Assignment, Quiz, Surprise tests, Present	ations,	
		Attendance etc.: 20 Marks		
		End Semester Exam: 50 Marks		
Objectiv	e:			
1.	To provide with the basic understa	anding of cyberspace and Cyber Securi	tycyber	laws and
	knowledge of security related to vario	us attacks.		
2.	To understand the concept of cybercrit	me and its types.		
3.	To comprehend the basics of various a	attack techniques.		
4.	To take preventive measures against v	arious attacks.		
5.	To provide the basic understanding of	cyber laws and legal perspective of cyberc	rimes.	
Pre-Requ	iisite:			
1.	Computer Network			
Module	Content		Hrs.	Marks
1	Introduction to Cyber Security:		5	
	Defining Cyberspace, Architecture,	Regulation of cyberspace, Concept of		
	Cyber Security, Importance of cyb	er security and cybersecurity strategy;		
	Perspective of cyber security policy,	National Cyber Security Policy (2013).		
	Overview of Cyber-attack, Cyberwa	arfare (Cyber espionage and sabotage),		
	Cyberterrorism.			
2	Cybercrime:		10	
	Cybercrime and its evolution, Cyber	crime categories, Cybercrimes- targeting		
	computer and mobiles (virus, worm,	Trojan horse, backdoors), ransomware,		
	Fraud and Financial Crimes; Cyb	percrime on Mobile Phones: Security		
	challenges in mobile devices, cryp	tographic security for mobile devices,		
	Attacks on Mobile phones (Mishing	g, Smishing, Vishing, Mobile Malicious		
		•	10	
5	1001s and 1 echniques Used in Cybe	rcrime:	10	
	Francisco Planting Transmission Planting D	and runnelling techniques (cover up),		
	Praud Techniques (Phisning, Rogue	Anuvirus, Click Fraud), Identity Theft,		
	Botnets, Butter Overflows, SQL Inject	ction, DoS and DDoS attacks, Keylogger		

	and spyware; Cyberstalking, Social Engineering, Hacking(Ethical/ Hacktivism)				
4	Cyber Strategy and Security policy:	5			
	Need and building of a cyber strategy, cyber attack and cyber defense				
	strategies, cybersecurity strategies for business, Protecting the network:				
	IDS/IPS, Firewall.				
5	Cyber Law:	6			
	The Legal perspective of cybersecurity and cybercrime, The Indian IT Act, IT				
	Act 2000: Challenges, Digital Signature and ITA 2000, Amendments to IT Act.				
Learning	g Resources:				
1	Godbole, Nina, and Sunit Belapure. "Cyber Security." Wiley India, New Delhi (2	2012).			
2	Graham, James, Ryan Olson, and Richard Howard, "Cyber security essentials".	CRC Press	s, 2016.		
3	Wu, Chwan-Hwa John, and J. David Irwin. "Introduction to computer networks a	and			
	cybersecurity". CRC Press, 2016.				
4	Kremling, Janine, and Amanda M. Sharp Parker. "Cyberspace, cybersecurity, and	d cybercri	me".		
	SAGE Publications, 2017.				
5	Alexandrou, Alex. "Cybercrime and Information Technology: The Computer Net	twork			
	Infrastructure and Computer Security, Cybersecurity Laws, Internet of Things (IoT), and Mobile				
	Devices". CRC Press, 2021.				
Course C	Dutcomes:				
After con	npletion of the course the students will be able to-				
CO1	Explain the concepts of cyberspace, Cybersecurity and its perspectives, National	policy on			
	cybersecurity, Cyberattack, Cyberwarfare and Cyberterrorism.				
CO2	Identify various types of attacks related to cyberspace and the cybercrimes targe	ting comp	outer and		
	mobiles.				
CO3	Differentiate the tools and techniques used in cybercrime.				
CO4	Develop cyber security strategies for businesses to prevent different cyberattacks	and netw	ork		
	intrusion.				
CO5	Explain legal issues of cybercrime, Indian IT Act 2000, its amendments and the p	provision	of		
	digital signature in ITA2000.				

Name of the course:	Industrial Management	
Course Code: HS(CS/IT)604	Semester: 6 th	
Duration: 6 months	Maximum Marks: 100	
Teaching Scheme	Examination Scheme	
Theory Contact Hrs.: 3 hrs/week	Mid Semester-1 Exam: 15 Marks	
Tutorial Contact Hrs.: 1 hrs./week	Mid Semester-2 Exam: 15 Marks	
Credit Point: 4	Assignment, Quiz & class attendance: 20 Marks	
	End Semester Exam: 75 Marks (to be mapped into 50	
	marks)	
Objective:		
1. To understand what is industrial Mana	agement	
2. To understand different corporate stru	ctures and management techniques.	

3.	To understand quality management and financial management.			
4.	To understand the union and State budget			
Pre-Requ	iisite:			
1.				
Module	Content	Hrs.	Marks	
1.	Human resource Management: Introduction of Human Resource	03		
	Management, recruitment and selection, performance appraisal, industrial,			
2	trade, collective bargaining.	05		
2.	Organisational behaviour: Different schools of Management thought:	05		
	relations theory.			
	Motivation: different theories, Communication: purpose, process, barriers to			
	effective communication, guidelines to make communication effective,			
	Perception: process, important factors influencing perception, shortcuts for			
	judging people, Halo effect, stereotyping projection			
3.	Quality management: concepts, dimensions for goods and services, cost of	05		
	management new quality tools			
4.	Marketing management: basic concepts of marketing, difference between	04		
	selling and marketing, elements of marketing mix, brief idea about marketing	-		
	environment, simple marketing strategies, SWOT analysis			
5.	Introduction to accounting: basic accounting concepts, important definitions,	10		
	uses, limitations, advantages, types of accounting, financial statements,			
	introduction to general accounting, different types of vouchers, double entry,			
6	Financial control: posting of ledgers and preparation of trial balance	06		
0.	preparation of balance sheet and profit and loss accounts, controlling other			
	departments by financial accounting (a practical approach)			
7.	Budget analysis: union and State budget analysis of the concerned year,	04		
	budget at a glance, annual financial statement economic survey of concerned			
	year			
After con	Putcomes:			
CO1	analyse different management techniques and schools of Management			
CO2	analyse about different quality control methods and organisational behaviour			
CO3	create strategic management in future			
CO4	comprehend and analyse accounts and its related management			
CO5	analyse union and State Government budgets			
Learning	Resources:			
1.	Industrial Management volume 1 LC, Jhamb, EPH			
2.	Industrial relations trade unions and labour legislation- Sinha Pearson education	Asia		
3.	Financial Management and accounting- P.k JaJain, S Chand			
4.	Organisational behaviour- SP Robbins, Prentice Hall			
5.	Production and operations management Joseph Monks, TMH			

Name of	Name of the course Computer Network Lab			
Course Code: PCL(CS/IT)619Semester: 6th				
Duration	uration: 6 months Maximum Marks: 100			
Teaching	Aching Scheme Examination Scheme			
Theory:		Continuous Evaluation		
Tutorial:		Experiment:50		
Practical:	3 hrs/week	Lab copy:30		
Credit Po	ints: 1.5	Viva:20		
Objectiv	e:			
1.	To study the components of computer	network		
2.	To configure MAC, IP and subnet			
3.	To implement socket programming			
4.	To configure different server			
5.	To implement real life application of c	lient server paradigm		
Pre-Requ	uisite			
1.	Basic knowledge of communication er	ngineering		
Module	Content		Hrs.	Marks
1	NIC Installation & Configuration (Win	ndows/Linux)	1	5
2	Understanding IP address, subnet, MA	AC address, IP configuration	2	5
3	Networking cables (CAT5, UTP), Connectors (RJ45, T-connector)		1	5
4	Physical verification of existing LAN25		5	
5	5.TCP/UDP Socket Programming		18	50
	i) UDP time client server program			
	11) UDP echo client server program			
	iii) TCP time client server program			
	v) TCP chat client server program			
	Vi) Data Link Laver Error Detection N	Aechanism (Cyclic Redundancy Check)		
6	Server Setup/Configuration FTP, Teln	et, DNS.	6	10
7	Firewall configuration in client level		3	5
8	Mini project: Multiple user chat server	implementation	6	15
Course C	Dutcomes:			
After con	npletion of this course, the learners will	be able to-		
CO1	Investigate configuration of existing L	AN		
CO2	Investigate and configure different components of computer network			
CO3	Implement client server model using socket programming			
CO4	Implement different server configurat	ion		
CO5	Configure firewall			
CO6	Design of real life problems and soluti	on for multiple client chat server		

Name of the course		Project 1	
Course	Code: PROJ(IT)601	Semester: 6 th	
Duratio	n: 6 months	Maximum Marks: 100	
Teachin	g Scheme	Examination Scheme	
Theory:	6 hours/week	Internal Evaluation: 80 Marks	
Credit P	oints: 3	End Semester (External) Exam: 20 Marks	
Objectiv	ve:		
1.	To provide with the basic understanding	g of computer science and knowledge of proficient different	
	techniques.		
2.	Familiar with technical documentations and research articles related to some engineering problem.		
3.	Put in order a systematic literature survey on some engineering problem and existing solutions.		
4.	Evaluate the scholarly articles.		
Pre-Requisite:			
(As required)			
Learnin	Learning Resources:		
(As requ	ired)		
Course	Outcomes:		
After co	mpletion of this Project 1 the students wi	ll be able to -	
CO1	Analyze technical documentations and research articles related to some engineering problem.		
CO2	Evaluate the scholarly articles with peer members as a team.		
CO3	Organize a systematic literature survey on some engineering problem and existing solutions		
CO4	Demonstrate the knowledge, skills and a	attitudes of a professional engineer during presentation.	
CO5	Defend the arguments of research article	es cited in survey report during presentations.	

FOURTH YEAR FIRST SEMESTER

	7 th SEMESTER						
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRS./WEEK	CREDIT
THE	ORY						
01	PEC(IT)703	Elective-III	3	0	0	3	3
02	PEC(IT)704	Elective-IV	3	0	0	3	3
03	OEC(IT/CS)702	Open Elective II	3	0	0	3	3
SESSIONAL/PRACTICAL							
01	PROJ(IT)702	Project 2	0	0	12	12	6
02	PEC(IT)704(A/B/C/D)L	Elective-IV Lab.	0	0	3	3	1.5
03	INDTR(IT)701	Industrial Training	0	0	0	0	1
04	CLA(IT)-7	Comprehensive Laboratory Assessment	0	0	0	0	1
TOTAL		11	0	15	24	18.5	

PEC(IT)703

PEC(IT)704

A: Machine Learning

B: Distributed Systems

C: Cloud Computing

D: Real Time Operating Sys.

A: Web Technology

B: Internetworking

C: Pattern Recognition

OEC(IT/CS)702

A: VLSI Design and Algorithm B: Digital Signal Processing C: Management Information Sys.

D: Natural Language Processing D: Big Data Analytics

Name of t	he course	MACHINE LEARNING		
Course C	ode: PEC(IT)703A	Semester: 7 th		
Duration	6 months	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3	hrs./week	Mid Term I: 15 Marks		
Credit Po	ints: 3	Mid Term II: 15 Marks		
		Assignment, Test based on assignments,	Surprise	tests,
		Quizzes, Presentations, etc.: 20 Mark	S	
End Semester Exam: 50 Marks				
Objective	s :			
1.	To understand and implement existing	learning algorithms		
2.	To employ probability, statistics, calcu	lus and linear algebra in order to develop	new pred	ictive
	models for learning methods			
3.	To select and apply an appropriate lear	rning algorithm for problems of different	kinds, inc	luding
	classification, regression, structure pre-	diction and clustering.		
4.	To Formulate real-world problems invo	olving data, such that they can be solved	by machir	ne
D D	learning.			
Pre-Requ	isites :			
1.	Mathematics I [BS(CS/IT)101], Mathe	CS/11)101], Mathematics II [BS(CS/11)205], Mathematics III		
2	[BS(CS/11)307]. Programming knowledge in Puthen [P	CI (CS/IT)205]		
2.	Frogramming knowledge in Fython [F	CE(C3/11)303]	ТТ	
Module	Content		Hrs.	Marks
	Introduction: Basic definitions, type	es of learning. Probability and Bayes	4	10
	Data for Mashing Learning Algorithm	Machine Learning Models, Prepare the		
	Categorical Attributes Handling Miss	ing Values Exploration of Data using		
	Visualization. Types of Machine Learn	ning Systems.		
2	Linear Regression: Linear regressio	on, Multivariate regression, Decision	4	10
	trees, Gradient Descent Algorithm f	for Linear Regression Model, Multi-		-
	collinearity, Logistic Regression.	e ,		
3	Supervised Learning : Types of class	sifiers, Binary Classifier, Naive Bayes	6	20
	Classifier, Multiclass, Multi-label at	nd Multi-output Classifier, Decision		
	Trees, Ensembles of Decision Tree	es: Random Forests, Support Vector		
	Machines, Model Evaluation and Impr	ovement.		
4	Dimensionality Reduction : Dimensi	ionality Reduction, Feature Extraction,	5	12
	and Manifold Learning, Principal Cor	nponent Analysis (PCA), Randomized		
	PCA, Incremental PCA, Kernel PCA,	Selecting a Kernel and Tuning Hyper-		
5	Unsupervised Learning: Differen	at clustering algorithms Partitive	5	20
5	Hierarchical and Density based cluster	ering Clustering for big data Compare	5	20
	the Clusters Created by K-Means and	nd Hierarchical Clustering Anomaly		
	Detection using Gaussian Mixtures.	Assessment Metrics for Clustering		
	Algorithms.	······································		
6.	Reinforcement Learning : Introduct	ion, model free and model based RL,	4	10

	RL algorithms - Q learning, State-Action-Reward-State-Action (SARSA)		
	etc.		
7.	Neural Network : Introduction, Multilayer network, Perceptron Learning,	8	18
	Backpropagation, Initialization, Training & Validation, Parameter Estimation		
	- MLE, MAP, Bayesian Estimation, Introduction to Deep Neural Network,		
	Convolution Neural Network and Recurrent Neural Network.		
Course O	utcomes:		
After com	pletion of this course students will be able to-		
CO1	Explain the fundamental issues and challenges of machine learning: data, model	selection	, model
	complexity, etc.		
CO2	Explain a wide variety of learning algorithms.		
CO3	Apply the underlying mathematical relationships to Machine Learning algorithms.		
CO4	Analyze different learning algorithms like supervised, un-supervised and reinforcement learning.		
CO5	Select algorithm (neural network) for specific application.		
CO6	Design and implement various machine learning algorithms in a range of real we	orld appli	cations.
Learning Resources:			
1.	Tom Mitchell, Machine Learning, McGraw Hill Education.		
2.	M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundation of Machine Learning, M	IIT Press.	
3.	Christopher Bishop. Pattern Recognition and Machine Learning. 2e, Springer.		
4.	S. S. Shwartz and S. B. David, Understanding Machine Learning : From Theory to Algorithms,		
	Cambridge University Press, 2014.		
5.	I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press.		
6.	V.S. Devi; M.N. Murty, Pattern Recognition: An Introduction, Universities Press, Hyderabad,		
	2011.		
7.	R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, Wiley, 2000		

Name of t	the course	DISTRIBUTED SYSTEMS	
Course C	ode: PEC(IT)703B	Semester: 7 th	
Duration	: 6 months	Maximum Marks: 100	
Teaching	Scheme	Examination Scheme	
Theory: 3	hrs./week	Mid Term I: 15 Marks	
Credit Points: 3		Mid Term II: 15 Marks	
		Assignment, Test based on assignments, Surprise tests,	
		Quizzes, Presentations, Attendance etc.: 20 Marks	
		End Semester Exam: 50 Marks	
Objective	:		
1.	To learn the principles, architectures,	algorithms and models used in distributed systems.	
2.	To give an understanding of the principles and techniques behind the design of distributed		
	systems, such as message passing, coordination, synchronization and fault tolerance.		
3.	To understand the issues involved in a virtual uniprocessor system of multiple computers along		
	with a distributed shared memory.		

4.	To provide an exposure conceptually into the design and functioning of ex	isting d	istributed
	systems		
Pre-Requ	isite:		
1.	Operating Systems [PC(CS/IT)511]		
2.	Computer Networks [PC(CS/IT)617]		
Module	Content	Hrs.	Marks
1	Introduction: Introduction to DCS, DCS design goals, Design issues, Transparencies, Examples and trends in distributed system, Challenges, Architectural models.	4	
2	Inter-process communication: Basic Message Passing Model, Issues in IPC by message, RPC basics, The RPC Model, RPC implementation, RPC communication protocols, Lightweight RPC.	6	
3	Distributed Coordination: Temporal ordering of events, Lamport's logical clocks, Vector clocks, Ordering of messages, Physical clocks, Global state detection.	5	
4	Distributed System Synchronization: Distributed Mutual Exclusion, Election Algorithms, Deadlocks in Distributed Systems, Termination detection.	7	
5	Distributed Shared Memory: DSM Concepts, Architecture, Design and Implementation Issues, Algorithms for implementing DSM. Memory Coherence, Heterogeneous and other DSM systems.	4	
6	Fault Tolerance: Failure Models, Process Resilience, Reliable Client Server and Group Communications, Distributed Commit Protocols, Check-pointing and Recovery	5	
7	Distributed File System: DFS definition, Characteristics, Goals, DFS Design, DFS Implementation, File Caching and Replication in DFS.	5	
Learning	Resources:		
1	Andrew S. Tanenbaum and Maarten V Steen, Distributed Systems Principles and	l Paradig	gms, PHI.
2	Coulouris, G. et al, Distributed Systems: Concepts and Design, 3rd Edition, Add	ison We	sley.
3	P. K. Sinha, Distributed Operating Systems: Concepts and Design, IEEE press.		
4	Singhal Mukesh & Shivaratri N. G., Advanced Concepts in Operating Systems,	ГМН	
5	Tanenbaum, A. S. Distributed Operating Systems, Prentice Hall.		
6	Ajay D. Kshemkalyani and Mukesh Singhal, Distributed Computing: Principles Systems, Cambridge University Press.	s, Algori	thms and
Course O	utcomes:		
After succ	Ulustrate the design goals, issues and challenges associated and the architecture of	f a distr	ibuted
	system.	n a uisu	Ibuted
CO2	Demonstrate the knowledge of details of message passing system and RPCs of d environment.	istribute	d
CO3	Apply important methodologies in distributed systems to support coordination ar synchronization of such systems.	nd	
CO4	Explain the architecture, design issues, implementing algorithms and coherences Shared Memory.	of Distr	ibuted
CO5	Analyze the implementation and underlying concepts of file caching and replica	tion in d	istributed

	file system.
CO6	Discern the issues related with faults in a distributed system to suggest basic measures.

Name of	the course	CLOUD COMPUTING		
Course Code: PEC(IT)703C		Semester: 7th		
Duration	: 6 months	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3	3 hrs/week	Mid Semester Exam: 15 Marks		
Tutorial: Assignment & Quiz: 10 Marks				
Practical:		Attendance: 05 Marks		
Credit Po	ints:	End Semester Exam: 70 Marks		
Objective	:			
1.	To understand the concept of cloud con	nputing.		
2.	To introduce the various levels of servi	ces that can be achieved by cloud.		
3.	To describe the security aspects in clou	ıd.		
4.	To solve a real-world problem using cl	oud computing.		
5.	To appreciate the emergence of cloud a	as the next generation computing paradig	n.	
Pre-Requ	iisite:			
1.	Operating System			
2.	Computer Networks			
Module	Content		Hrs.	Marks
1	Introduction to Cloud Computing:		3	
	Cloud Computing (NIST Model), Prop	erties, Characteristics & Disadvantages		
2	Cloud Computing Architecture:		5	
	Cloud computing stack, Service Mode	s, Deployment Models	6	
3	Infrastructure as a Service (laaS):	insting Case study on Inc.	6	
4	Platform of a Sorvice (Pass):	Ization, Case study on Taas	5	
4	Introduction to PaaS, Cloud Platform a	and Management, Case study on PaaS.	5	
	Software as a Service(SaaS):			
5	Introduction to SaaS, Web services, W	eb 2.0, Web OS, Case Study on SaaS	5	
6.	Service Management in Cloud Com	outing:	6	
	Service Level Agreements (SLAs),Bi	lling & Accounting,Comparing Scaling		
	Hardware: Traditional vs. Cloud,	Economics of scaling: Benefitting		
	enormously, Managing Data			
7	Cloud Security:		6	
	Infrastructure Security, Data security	ity and Storage, Identity & Access		
	Management, Access Control, Trust, R	eputation, Risk, Authentication in cloud		
	computing, Client access in cloud, Clo	oud contracting Model, Commercial and		
Loarning	Basources:			
Learning	incoull ces.			

1	Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010		
2	Cloud Computing: Principles and Paradigms, Editors: Rajkumar Buyya,		
	James Broberg, Andrzej M. Goscinski, Wile, 2011		
3	Cloud Computing: Principles, Systems and Applications, Editors: Nikos Antonopoulos,		
	Lee Gillam, Springer, 2012		
4	Rittinghouse, John W., and James F. Ransome, Cloud Computing: Implementation, Management		
	and Security, CRC Press, 2017.		
5	Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz, Russell		
	Dean Vines, Wiley-India, 2010		
6	Cloud Computing: A Practical Approach, Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, Tata		
	McGraw Hill, rp2011.		
Course Outcomes:			
After con	After completion of this course, the learners will be able to		
1	Analyze the trade-offs between deploying applications in the cloud and over the local		
	infrastructure.		
2	Compare the advantages and disadvantages of various cloud computing platforms.		
3	Deploy applications over commercial cloud computing infrastructures.		
4	Select the appropriate technologies and approaches for implementation and use of cloud.		
5	Analyze the performance, scalability, and availability of the underlying cloud technologies and		
	software.		
6	Identify security and privacy issues in cloud computing.		

Name of	me of the course REAL TIME OPERATING SYSTEM			
Course (Code: PEC(IT)703D	Semester: 7th		
Duration	a: 6 months	Maximum Marks: 100		
Teaching	g Scheme	Examination Scheme		
Theory:	3 hrs/week	Mid Term I Exam:	15 Marks	
Credit Po	ints: 3	Mid Term II Exam:	15 Mar	ks
		Class performance & Attendance:	20 Mar	ks
		End Semester Exam & Viva:	50 Mar	ks
Objectiv	e:			
1.	To understand the structure and properties of real time operating system.			
2.	To understand resource management activities in Real time operating system.			
3.	To apply different techniques for process management and memory management in RTOS.			
4.	To implement RTOS models.			
Pre-Req	uisite:			
1.	Operating Systems			
Module	Content		Hrs.	Marks
1	Introduction to RTOS		6	
	Overview of Architecture of OS, Virt	ual Computers, Interaction of O.S. &		
	hardware architecture, Distributed real-time systems, multiprocessor real-time			

	systems.		
2	Architecture of RTOS	8	
	Defining Real time systems, designing and Developing Real-time Systems,		
	Special Characteristics of real time systems, Hard Real Time System and Soft		
	Real Time System, Interrupts and Exceptions, Concepts of interrupt driven		
	activation, need for real time monitor, pseudo parallelism, meeting of deadlines		
	& real time constraints, Real-Time Devices, Event driven activities, Timers and		
2	Real-time Facilities.	6	
5	Resource management in real time systems, notential problems and their	0	
	resolution issues in building real time systems. Resource sharing in real time		
	systems		
4	Process Management	6	
	Multitasking in Real-Time Systems, Real Time Scheduling concepts.		
	Uniprocessor scheduling, Multiprocessor Scheduling, schedulable analysis,		
	clock-driven and priority-driven scheduling Process Synchronization, Inter-task		
	communication Networking,		
5	Memory management	4	
	Memory space protection, Memory allocation schemes, deallocation, large virtual		
	address space, memory protection.		
6	Implementation model	6	
	Overview of WARD & MELLOR Methodology: Ward & Mellor Life Cycle, the		
	essential model step, the, real time extensions of DFD Real time languages:		
Course	overview of ADA/Java Extension		
After con	upletion of the course students will able to-		
CO1	Review different types of Operating systems, their basic structure and features.		
CO2	Select the architecture of real time operating system.		
CO3	Analyze the resource management in real time operating system.		
CO4	Determine the process management in real time operating system		
C05	Evaluate the memory management in real time operating system		
C06	Devalue different real time implementation models		
Loorning	agrning Resources.		
	"Page Time Systems" C.M. Krishna and G. Shin. McCrowy Hill International Edition		
1	<i>Keul Time Systems, -</i> U.M. Krisnna and G. Snin, -McGraw-Hill International Edition		
2	"Real Time Systems and software" -Alan C. Shaw; John Wiley & Sons Inc		
3	Keal ume Systems', J. W. S. Liu, Pearson		
4	"Embedded and real time operating systems" K.C. Wang- Springer		
5	"Building a real time operating system" Colin Walls Newnes publication		
6	"Real time operating system books" –Jim Cooling		

Name of the course	WEB TECHNOLOGY
Course Code: PEC(IT)704A	Semester: 7 th

Duration: 6 months		Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Theory: 3 hrs./week		Mid Term I: 15 Marks				
Credit Points: 3		Mid Term II: 15 Marks				
		Assignment, Test based on assignments, Surprise tests,				
		Quizzes, Presentations, Attendance etc. :	20 M	arks		
		End Semester Exam: 50 Marks				
		I				
Objective:						
1.	To understand the web-based technologies and able to apply the appropriate one to design web-					
	based applications.					
2.	To apply different web design tools & techniques for developing web application.					
3.	To understand the underlying architecture of web-based applications.					
4	To solve the common ecommerce site design and maintenance problems					
Dro Dom	10 solve the common economic site design and maintenance problems.					
1 Ie-Keq		/ITT) 5 1 2]				
1.	Object Oriented Programming [PC(CS/IT)513]					
2.	Database Management System [PC(CS/IT)512]					
Module	Content		Hrs.	Marks		
1	Module1: Introduction to Web Appl	ication	3			
	Web Client, Web server, Web Application Architecture, Web Client-Server					
	Request-Response Paradigm, Server-si	de Technologies: Common Gateway				
	Interface, JEE Overview, JEE Architecture.					
2	Module2: Web Pages 5 Static, Dynamic and Active Web Pages, Overview of HTML, CSS and 5 Beststreen Java Applets: Applet Life Cycle, Applet APL Craphics and Event 5					
	Bootstrap, Java Applets: Applet Life Cycle, Applet API, Graphics and Event					
3	Module3: JavaScrint		4			
	Variables, Expressions, Control Statements, Arrays, Objects, Functions, Events					
	and Validations, Regular Expressions.					
4	Module4: XML		3			
	Introduction to XML, Document Type	Definition and its attributes and entities,				
	Namespaces and Schema, XSLT.					
5	Module5: JDBC		3			
	Introduction to Java database connectiv	vity, JDBC Drivers, Establishing				
	connection, Executing query, Result pr	ocessing, Database Metadata, Working				
6	Madula Lava Samulat	nent.	6			
0	Server-side programming Servlet API	The Servlet Architecture. The Servlet	0			
	Life Cycle, GET and POST. Servlet Li	fe Cycle methods. Processing form data				
	Database connectivity through servlet.	ServletConfig and ServletConext,				
	Servlet chaining.					
7	Module7: Java Server Pages		6			
	Introduction to JSP, Life Cycle of a JS	P Page, JSP Elements: Directives,				
	Scripting Elements, JavaBeans, Implic	it Objects and Scope.				

8	Module8: Cookies and Session Management	4				
0	The Contents of a Coakie Types of Coakies Creating Coakies using Servlet					
	The Contents of a Cookie, Types of Cookies, Creating Cookies using Servici,					
	Lifecycle of HTTP Session, Session Tracking with Servlet API, Working with a					
	Session.					
9	Module9: Enterprise Java Beans	4				
	Introduction to EJB, Enterprise Bean Architecture, Benefits of Enterprise Bean,					
	Types of Enterprise Bean, Writing Enterprise Beans.					
Course Outcomes:						
After completion of this course the students will be able to -						
CO1	Differentiate among various types of web application development technologies.					
CO2	Design the front end of any web application with the help of associated technologies.					
CO3	Apply the skills related to client side validation technique and able to recognize different types of					
	document type definition in web design.					
CO4	Work with different database management system and also be able to perform different CRUD					
	operations.					
CO5	Create dynamic web pages and also be able to develop server side scripting for server side					
	processing.					
CO6	Apply user sessions in dynamic web project and also be able to design business logic.					
Learning Resources:						
1	Java EE for Beginners, Sharanam Shah, SPD Publications					
2	Beginning Java EE 5: From Novice to Professional, Mukhar and Zelenak, Apress					
3	Professional Java Server Programming, Allamaraju, WROX Publishers					
4	Java Server Programming Java EE 7 (J2EE 1.7), Kogent Learning Solutions Inc.					

Name of the course		INTERNETWORKING			
Course Code: PEC(IT)704B		Semester: 7 th			
Duration: 6 months		Maximum Marks: 100			
Teaching Scheme		Examination Scheme			
Theory: 3 hrs./week		Mid Term I: 15 Marks			
Credit Points: 3		Mid Term II: 15 Marks			
		Assignment, Test based on assignments, Surprise tests,			
		Quizzes, Presentations, Attendance etc.: 20 Marks			
		End Semester Exam: 50 Marks			
Objective:					
1.	To build an understanding of the fundamental concepts of layered protocol stack, Internet				
	administration, architecture and interconnection				
2.	To give an understanding of the general principles behind different addressing schemes, routing,				
	network diagnostics, address translation.				
3.	To cover the issues involved in different Internet related protocols and connection oriented services				

 to support network applications and QoS.

 4.
 To provide an exposure on the issues of different applications, network-management and network-security.
Pre-Requ	Pre-Requisite:				
1.	Computer Networks [PC(CS/IT)617]				
Module	Content	Hrs.	Marks		
1	An Overview of the Internet: Introduction, The need and scope, Accessing the	3			
	Internet, Protocol Layering, OSI-ISO, Intranet and Internet, The TCP/IP Internet,				
	Internet services, Internet Architectural model, Internet standards and				
	administration.				
2	Internetworking Concepts: Review of Network technologies: WAN, Switching	4			
	Network; ISDN and ATM services, DSL technologies, Interconnection through				
2	IP Gateways or routers.	5			
3	Internet Addressing: Introduction, Universal identifiers, Classical and classiess	3			
	supernet addressing. Manning internet addresses to physical addresses (ARP)				
	IPv6.				
4	Routing: Table driven IP routing, Default Routes, The origin of Gateway	7			
	routing tables, Core Routers, Distance Vector (Bellman-Ford) routing, Link State				
	Routing, Autonomous system concept, Interior Gateway Protocol (RIP, OSPF),				
	An Exterior Gateway Protocol: BGP, Routing with partial information, MPLS.				
5	Internet Protocols: The concept of Connectionless delivery system, The	7			
	Internet Datagram, Error and control messages: ICMP; NAT.				
	LUDB deterror TCB convices and connection oriented transport layer services:				
	SCTP				
6	Internet Security and Firewall: IP Security: IPSec. Security Association AH	6			
	ESP: SSL: Architecture, implementation (four protocols). Use of SSL:				
	Introduction to Firewall, Types and configuration of firewall, squid (proxy),				
	VPN, DMZ.				
7	Internet Servers and Applications: DNS, DHCP, FTP, SSH, HTTPS and E-	4			
	Mail.				
Learning Resources:					
1	Internetworking with TCP / IP - Douglas E .Comer; PE.				
2	Computer Networks and Internets - Douglas E. Comer; PE.				
3	TCP/IP protocol suite - Forouzan Behrouz A; TMH.				
4	Communication Networks - Leon-Garcia-Widjaja; TMH.				
5	Computer Networks – Andrew S. Tanenbaum; PHI.				
5	Data and Computer Communication - William Stallings; PHI.				
Course C	Jutcomes:				
After con	apieuron or the course students will able to-	oth inte	an at an d		
	the Internet	oui intr	anet and		
CO2	Apply the fundamental concepts of different addressing schemes and their translati	on			
CO2 CO3	Compare the philosophy and implementation of different routing and their correspondences	nding al	orithms		
	Annu kay natworking protocols considering their hierarchical relationship in the s	ontext o	f		
004	TCP/IP framework	omext C	1		
	i civili numewolk.				

CO5	Analyze different security threats and vulnerabilities in the domain of internetworking and the	
	required measures to mitigate the threat.	
CO6	Demonstrate the working principle and the server implementation of some common applications.	

Name of the course		Pattern Recognition		
Course Code: PEC(IT)704C		Semester: 7 th		
Duration: 6 months		Maximum Marks: 100		
Teaching Sche	me	Examination Scheme		
Theory: 3 hrs./	week	Mid Term I: 15 Marks		
Credit Points: 3		Mid Term II: 15 Marks		
		Assignment, Test based on assignments, Surprise tests,		
		Quizzes, Presentations, Attendance etc.: 20	Marks	
		End Semester Exam: 50 Marks		
Objective:				
1. To 1	earn the main concepts of the d	esign and construction and a pattern recognition	system	•
2. To u	nderstand the the major approa	ches in statistical and syntactic pattern recognit	ion. The	student
shou	ld also have some exposure to	the algorithm theoretical issues involved in patte	ern reco	gnition
syste	em design such as the curse of	dimensionality.		
3. Ana	Analyze the performance of different clustering algorithm on big data set based on classification		cation	
rate.	rate.			
Pre-Requisite:	're-Requisite:			
1. The	The students have a working knowledge of calculus, linear algebra, and probability theory. A basic			
knov	knowledge of Matlab will be useful			
Module Con	Content Hrs. Marks			
1 Intr	Introduction : The nature of statistical pattern recognition; Three learning 6			
para	paradigms; The sub-problems of pattern recognition; The basic structure of a			
2 Paul	pattern recognition system; Comparing classifiers.			
2 Day	Bayes Decision Theorem : Bayes classifier; Linear and non linear discrimination 6 functions Optimal decisions: Minimum error rate classification; error probability			
3 Para	metric approaches Basic sta	atistical issues: Sources of classification error:	6	
Bias	Bias and variance: Three approaches to classification: density estimation.			
regr	regression and discriminant analysis; Empirical error criteria; Optimization			
meth	methods; Failure of MLE.			
4 Para	Parametric Estimation : Maximum Likelihood estimation, Gaussian mixture 6			
mod	models ,Expectation-maximization method, Baysian estimation, Hidden markov			
mod	model .			
5 Noi	Nonparametric Techniques: Parzen window method, Nearest Neighbor 4			
6 Foot				
dim	nod. Tura Salaction: Class Sanarah	ility Massuras Divergance Scotter Matrices	8	
	od. ure Selection: Class Seperable ensionality reduction similar	ility Measures- Divergence, Scatter Matrices,	8	
algo	nod. ure Selection: Class Seperable ensionality reduction, similar rithms, principal component an	ility Measures- Divergence, Scatter Matrices, ity measures, feature selection criteria and alvsis.	8	

Course Outcomes:

After completion of this course students will be able to-

CO1: Understand the various techniques and algorithms involved in pattern recognition research.

CO2: Categorize the various pattern recognition techniques into supervised and unsupervised.

CO3: Illustrate the artificial neural network based pattern recognition.

CO4: Apply pattern recognition techniques to real-world problems such as document analysis and recognition.

CO5: Implement simple pattern classifiers, classifier combinations, and structural pattern recognizers.

Learning Resources:

1. Duda, R.O., Hart, P.E., and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001.

2. S. Theodoridis and K.Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009

3. J.T.Tou and R.C. Gonzalez:Pattern Recognition Principles, Addison-Wesley, London.

4. Marsland, S. Machine Learning: An Algorithmic Perspective. CRC Press. 2009. (Also uses Python.)

5. Bishop, C. M. Pattern Recognition and Machine Learning. Springer. 2007.

6. Theodoridis, S. and Koutroumbas, K. Pattern Recognition. EditionAcademic Press, 2008.

7.Russell, S. and Norvig, N. Artificial Intelligence: A Modern Approach. Prentice Hall Series in Artificial Intelligence. 2003.

8.Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press. 1995.

9.Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning. Springer. 2001.

10. Koller, D. and Friedman, N. Probabilistic Graphical Models. MIT Press. 2009.

GeneralLinks:

Pattern Recognition: Pattern Recognition Course on the Web (by Richard O. Duda).

Name of the course:		VLSI Design and Algorithm
Course Co	ode: PE (IT) 702D	Semester: 7 th
Duration:	6 months	Maximum Marks: 100
Teaching Scheme		Examination Scheme
Theory Co	ontact Hrs.: 3 hrs/week	Mid Semester-1 Exam: 15 Marks
Tutorial C	ontact Hrs.: 1 hrs./week	Mid Semester-2 Exam: 15 Marks
Credit Poin	nt: 3	Assignment, Quiz & class attendance: 20 Marks
		End Semester Exam: 75 Marks (to be mapped into 50 marks)
Objective:		
1.	Basic idea about MOS transistor models and fundamental idea about CMOS inverter.	
2.	Able to realize the dynamic and static power dissipation of CMOS.	
3.	Basic idea about Placement & Routing mechanism of CMOS VLSI circuit.	
4.	Idea about Verification and Testing of CMOS circuit, Types of testing, Fundamental idea about FPGA.	
5.	Basic idea about Computer aided design tools for digital systems.	
6.	Combinational and Sequential Circuit design using VHDL.	

Pre-Requ	Pre-Requisite:			
1.	Physics (CS/IT 102)			
2.	Computer Architecture (IT 507)			
Module	Content	Hrs.	Marks	
1.	Introduction to CMOS: MOS Structure, MOS Transistor models: NMOS,	08		
	PMOS and CMOS Logic, Enhancement & Depletion Transistor, Threshold			
	Voltage, MOS device design equations, the inverter, MOS transistor switches.			
	NMOS Inverter and Transfer Characteristics, pull up and pulldown ratios of			
	NMOS, Alternative forms of pull up the CMOS Inverter and transfer			
	characteristics. CMOS Inverter Delays. Combinational Logic, NAND gate, NOT			
	Gate, Compound Gates, Multiplexers, Memory-Latches and Registers.			
2.	Power Dissipation: Static dissipation, Dynamic dissipation, short-circuit	02		
2	dissipation, total power dissipation.	04		
3.	Placement & Routing: Mincut based placement – Iterative improvement	04		
	placement simulated annealing. Segmented channel routing – maze routing –			
4	Varification and Testing, Varification, logic simulation design validation	05		
4.	timing verification – Testing concents: failures – mechanisms and faults – fault	05		
	coverage $_$ \triangle TPG methods $_$ types of tests $_$ FPG \triangle s $_$ programmability failures			
	- design for testability			
5.	Introduction to Computer aided design tools for digital systems: Hardware	15		
	description languages, Introduction to VHDL. Design Methods: Behavioural			
	Synthesis, RTL synthesis. Introduction to behavioral, dataflow and structural			
	models.			
6.	Applications of VHDL: Combinational Circuit Design such as Multiplexers,	04		
	Encoders, Decoders, Code Converters, Comparators, and Implementation of			
	Boolean functions etc., Sequential Circuit Design such as Shift registers,			
	Counters etc.			
Course O	utcome:			
After com	pletion of this course the students will be able to -			
CO1	Analize the MOS transistor models and fundamental idea about CMOS inverter.			
CO2	Compare to realize the dynamic and static power dissipation of CMOS.			
CO3	Evaluate the Placement & Routing mechanism of CMOS VLSI circuit.			
CO4	Classify the basic idea about Verification and Testing of CMOS circuit.			
CO5	Design Combinational and Sequential Circuit using VHDL.			
Learning Resources:				
1.	CMOS Digital Integrated Circuit, S.M.Kang & Y .Leblebici ; TMH.			
2.	Algorithm for VLSI Design & Automation ; N.Sherwani, Kluwer .			
3.	Principle of CMOS VLSI Design, Weste and Eshrighian ; Pearson Education.			
4.	Modern VLSI Design: system on silicon, Wayne Wolf, Addison; Wesley Longman	n Publis	her.	
5.	"Basic VLSI Design" Douglas A. Pucknell & Kamran Eshranghian; PHI			
6.	"CMOS Circuit Design, Layout & Simulation", R.J.Baker, H.W.Lee, D.E. Boyee,	PHI		

Name of the course:		Digital Signal Processing		
Course Code:OEC(IT/CS)702B		Semester: 7 th		
Duration: 6 months		Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory C	ontact Hrs.: 3 hrs/week	Mid Semester-1 Exam: 15 Marks		
Tutorial C	Contact Hrs.: 1 hrs./week	Mid Semester-2 Exam: 15 Marks		
Credit Po	int: 4	Assignment, Quiz & class attendance: 20 M	Aarks	
		End Semester Exam: 75 Marks (to be map	ped into	50
		marks)		
Objective	2:			
1.	To understand the properties of differ	ent type of discrete time signals and systems		
2.	To apply different mathematical tools	s for frequency domain analysis of discrete tin	ne signa	ls.
3.	To design different types of digital fi	lters and compare their performances		
Pre-Requ	isite			
1.	Communication engineering (ES(CS/	IT)409)		
Module		Content	Hrs	Marks
1	Discrete-time signals		4	
	Concept of discrete-time signal, ba	asic idea of sampling, sampling theorem,		
	sequences – periodic, energy, power, unit-sample, unit-step, unit-ramp, real &			
	complex exponentials, arithmetic operations on sequences.			
2	LTI Systems 6			
	Deminuon, representation, impulse response, derivation for the output sequence,			
	supported with examples and exercise	ses properties of convolution stability and		
	causality conditions			
3	Z-Transform 6			
	Definition, mapping between s-plane and z-plane, unit circle, convergence and			
	ROC, properties of Z-transform, inve	rse Z-transform		
4	Discrete Fourier Transform		9	
	Concept and relations for DFT/ID	FT, Twiddle factors and their properties,		
	computational burden on direct DFT, DFT/IDFT as linear transformations,			
	of DETs, circular convolution, filtering of long data sequences. Overlap Save			
	and Overlan-Add methods with examples and exercises			
5	Fast Fourier Transform 5			
	Radix-2 algorithm, decimation-in-time, decimation-in-frequency FFT algorithms.			
6	Digital Filter 6			
	Basic concepts of IIR and FIR digital filters. design of Butterworth IIR filter			
	using impulse invariant and bilinear transformation method, design of FIR filter			
using window method.				
Course Outcome:				
CO1 compare the characteristics of different discrete time signals and systems				
	describe Z transform of discrete time	sequences and its properties		
002		sequences and its properties.		

CO3	apply the concepts of sampling in frequency domain for computing DFT and IDFT of discrete time	
	sequences.	
CO4	compare the performance of different Fast Fourier Transform(FFT) techniques.	
CO5	design different types of Digital Filters.	
Learning Resources:		
1.	Digital Signal Processing – Principles, Algorithms and Applications, J.G.Proakis&D.G.Manolakis,	
	Pearson Ed.	
2.	Digital Signal Processing, P. Rameshbabu, Scitech Publications (India)	
3.	Digital Signal processing – A Computer Based Approach, S.K.Mitra, TMH Publishing Co	
4.	Digital Signal Processing, S.Salivahanan, A.Vallabraj& C. Gnanapriya, TMH Publishing Co	

Name of the course:		MANAGEMENT INFORMATION S	SYSTEM	[
Course Code: OEC(IT/CS)702C		Semester: 7 th		
Duration	: 6 months	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory C	ontact Hrs.: 3 hrs/week	Mid Semester-1 Exam: 15 Marks		
Tutorial C	Contact Hrs.:	Mid Semester-2 Exam: 15 Marks		
Credit Po	int: 3	Assignment, Quiz & class attendance: 20	Marks	
		End Semester Exam: 75 Marks (to be ma marks)	apped into	50
Objective	:			
1.	To understand the structure of Management Information Systems (MIS) and different types of Information Systems.			
2.	To learn about MIS Planning and Development and analyzing of Economic Behavior.			
3.	To understand the relationship between MIS and BPR and also have knowledge about ERP and E-			
	enterprise System.			
4.	To learn about MIS support models and current trends in MIS along with security issues.			
Pre-Requ	e-Requisite:			
1.	Economics for Engineers [HS(CS/IT)303]			
2.	Industrial Management [HS (CS/IT)604]			
Module	Content		Hrs.	Marks
1.	Understanding MIS and Conc	eptual Foundations: Introduction to	5	
	Management Information Systems, MIS Categories, Managers and			
	Activities in IS, The Decision Making Process, System Approach to			
	Problem Solving, The Structure of Management Information System,			
	Kinds of Information Systems, Governance Modes in the use of IT			
2.	Planning, Development and	MIS Organization Structure: MIS	5	
	Planning, MIS development, MIS at Management levels, Strategic Level			
3	MIS and BPR. Business Process	Re - Engineering Improving a process	4	
5.	in BPR. Object Oriented methodol	ogy. BPR – Current Focus	- -	

4.	Enterprise Resource Planning and E-Enterprise System: Basics of 6			
	ERP, Enterprise Systems in Large Organizations, Organization of			
	Business in an E-enterprise, E-business, E-commerce, E-communication,			
	E-collaboration			
5.	MIS – Support Models and Knowledge Management: Market 8			
	Research Methods, Ratio Analysis for Financial Assessment, Procedural			
	Models, Project Planning and Control Models, Operations Research			
	Models: Mathematical Programming Techniques, Knowledge			
(Management	0		
0.	Ethical issues and Irends in MIS: Control issues in Management	8		
	solutions for Privacy Protection Decision Support Systems (DSS) Types			
	of Database Users Designing of DBMS Artificial Intelligence (AI)			
	Basic Network Terminologies The Intranet and the Extranet			
Course O	Justo receiver refinitiones in interest and the Entranet			
After con	pletion of this course the students will be able to -			
CO1	explain MIS, Structure of MIS as well as different kinds of Information Systems.			
CO2	make use of the concept of MIS Planning, Development and Economic and Behavior Theories.			
CO3	discuss the relation between MIS and BPR.			
CO4	apply ERP, E-business, E-commerce, E-communication and E-collaboration.			
CO5	design MIS- Support Models and the concept of Knowledge Management.			
CO6	illustrate the Security Hazards in MIS and the applications currently trending in MIS.			
Learning	rning Resources:			
1.	Kenneth C. Laudon, Jane P. Laudon, Management Information System, Pearson Education India, ISBN: 9789332548909			
2.	Ramesh Behl, James A. O'Brien, George M. Marakas, Management Information Systems,			
	McGraw Hill Education India, ISBN: 9789353164652			
3.	S. Sadagopan, Management Information Systems, PHI Learning, ISBN: 9788120348929			
4.	Indrajit Chatterjee, Management Information Systems, PHI Learning, ISBN: 9788120340237			
5.	Girdhar Joshi, Management Information Systems, Oxford University Press India, ISBN: 9780198080992			
6.	Oz Effy, Management Information Systems, Cengage Learning Inc., ISBN: 9780	61921538	5	

Name of the course:	BIG DATA ANALYTICS
Course Code:	Semester: 7 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory Contact Hrs.: 3 hrs/week	Mid Semester-1 Exam: 15 Marks
Tutorial Contact Hrs.:	Mid Semester-2 Exam: 15 Marks
Credit Point: 3	Assignment, Quiz & class attendance: 20 Marks
	End Semester Exam: 75 Marks (to be mapped into 50 marks)

Objective	:		
1.	To understand Big Data and its uses		
2.	To provide an overview of Hadoop and its Ecosystem		
3.	To understand MapReduce Jobs		
4.	To learn HDFS concepts		
Pre-Requ	isite		
1.	Database Management System [PC(CS/IT)512]		
Module	Content	Hrs.	Marks
1	Big Data Overview and Applications	4	
1.	Definition and History of big data. Elements of big data. Advantages and		
	Disadvantages of big data, Using big data in businesses		
2.	Technologies for handling Big Data	6	
	Introduction to Hadoop, Functioning of Hadoop, Cloud Computing for big data		
3.	Understanding Hadoop Ecosystem	9	
	HDFS, MapReduce, Hbase, Hive, Pig, Big SQL		
4.	MapReduce	8	
	Anatomy of a MapReduce Job Run, Failures, Job Scheduling, Shuffle and Sort,		
	Task Execution, MapReduce Types and Formats, MapReduce Features		
5.	HDFS(Hadoop Distributed File System)	9	
	Design of HDFS, HDFS Concepts, Command Line Interface, Hadoop file		
	system interfaces, Data Flow, Data Ingest with Flume and Sqoop and Hadoop		
Course			
After corr	interior of this course the students will be able to -		
CO1	explain Big Data and its business applications		
CO2	apply the technologies for handling Big Data		
CO3	classify the components of Hadoon Ecosystem		
CO4	demonstrate Jobs in Hadoon Environment		
C05	analyze data on Distributed File System		
Looming			
Learning	g Kesources:		
1.	9788126579518	t. Ltd, IS	BN:
2.	Tom White, Hadoop: The Definitive Guide - Storage and Analysis at Internet Sca	le, Shrof	f
	Publishers & Distributors Pvt Ltd, ISBN: 9789352130672		
3.	Mark Hornick, Tom Plunkett, Using R to Unlock the Value of Big Data, McGraw Europe, ISBN: 9780071824385	-Hill Ed	ucation -
4.	Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer-Verlag Berl	lin and	
	Heidelberg GmbH & Co. KG, ISBN: 9783540430605		
5.	Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Mining of Massive Data University Press ISBN: 9781316638491	asets, Ca	mbridge
6.	Bill Franks, Taming The Big Data Tidal Wave, John Wiley & Sons Inc. ISBN: 97	78111820	08786
-			'

Name of the course		Web Technology Lab.	
Course Code: PEC(IT)704A-L		Semester: 7th	
Duration: 6 months		Maximum marks:100	
Teaching Scheme		Examination scheme:	
Theory:	3 hrs./week	Laboratory journal book and Results: 40 marks	
Credit P	Points: 1.5	Viva Voce conducted during semester: 40 marks	
		Attendance, Overall conduct, Skills etc.: 20 marks	
Objecti	ve:		
1.	To design and deploy web enabled serv	ices with the help of appropriate technologies.	
2.	To maintain the modules associated wit	h web-based applications.	
3.	To solve the common ecommerce site d	lesign and maintenance problems.	
5.		in and maintenance procreme.	
Pro-Ro	misito		
1	Object Oriented Mathedology [PC(CS/	IT\512]	
I.	tory Europiments	[1]515]	
Labora	tory Experiments:	200	
1.	Designing of web pages using HTML, CSS.		
2.	Client-side scripting using java script.		
3.	XML.		
4.	CRUD operations using JDBC.		
5.	Servlets.		
6.	JSP.		
7.	Session Management.		
8.	Case study on designing web-application module.		
9.	Demonstration on AJAX.		
Course	Outcomes:		
After co	ompletion of this course the students will	be able to -	
CO1	Differentiate among various types of we	eb application development technologies.	
CO2	Design the front end of any web application	ation with the help of associated technologies.	
CO3	Apply the skills related to client side v	validation technique and able to recognize different types of	
	document type definition in web design		
CO4	Work with different database manage	ment system and also be able to perform different CRUD	
	operations.		
CO5	Create dynamic web pages and also	be able to develop server side scripting for server side	
	processing.		
CO6	Apply user sessions in dynamic web pro	oject and also be able to design business logic.	
Learnii	ng Resources:		
1	Java EE for Beginners, Sharanam Shah	, SPD Publications	
2	Beginning Java EE 5: From Novice to I	Protessional, Mukhar and Zelenak, Apress	
3	Protessional Java Server Programming,	Allamaraju, WROX Publishers	
4	Java Server Programming Java EE 7 (J2EE 1.7), Kogent Learning Solutions Inc.		

Name	of the course	Internetworking Lab.	
Course	Code: PEC(IT)704B-L	Semester: 7th	
Durati	on: 6 months	Maximum marks:100	
Teachi	ng Scheme	Examination scheme:	
Theory	: 3 hrs./week	Laboratory journal book and Results: 40 marks	
Credit I	Points: 1.5	Viva Voce conducted during semester: 40 marks	
		Attendance, Overall conduct, Skills etc.: 20 marks	
Object	ive:	·	
1.	To learn coding and implementation of c	lifferent types client server socket programing.	
2.	To implement simulation based commun	nication.	
3.	To design IP address allocation scheme	and handle basic router configuration.	
4.	To have exposure on some common serv	ver configuration.	
Pre-Re	quisite:		
1.	Computer Network lab [PCL(CS/IT)619]	
Labora	itory Experiments:		
1.	Using TCP/IP sockets, Implementation of Echo Server and Client program in Linux using C.		
2.	Programming for error detection using CRC.		
3.	Implementation of data link protocols - Stop and Wait ARQ in Linux using C		
4.	Initial Setup and Configuration of Graphical Network Simulator 3 (GNS3).		
5.	Switch Configuration for PC to PC communication in GNS3.		
6.	Router Configuration for PC to PC communication in GNS3.		
7.	Configuration of DNS server/ Firewall s	erver.	
8.	Designing a scheme for IP address alloc	ation.	
Learni	ng Resources:		
1.	UNIX Network Programming: The s Programming, W. Richard Stevens, Pea	sockets networking API, Volume 1 of UNIX Network rson Education	
Course	Outcomes:		
After co	ompletion of this course the students will b	be able to -	
CO1	Implement basic concepts of client/serve	er models and communicate using socket programming.	
CO2	Implement transport layer concepts and models, techniques to provide reliable data	protocols; including connection oriented and connection-less ata delivery.	
CO3	IMplement data link layer concepts and	protocols (Stop and Wait, including CRC)	
CO4	Simulate basic networking environments	s, switching and routing.	
CO5	Configure some application servers.		
CO6	Determine the structure and organization	n of computer networks, IP addressing allocation schemes.	

Name of the course	Project 2
Course Code: PROJ(IT)702	Semester: 7 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme

Theory:	12 hours/week	Internal Evaluation: 80 Marks	
Credit P	Points: 6	End Semester (External) Exam: 20 Marks	
Objective:			
1.	To apply the concept related to mathem	natics and computer Sc.	
2.	Express a sound technical knowledge to	o undertake problem identification and solution methodology	
	on project topic.		
3.	To demonstrate the techniques those ha	ve been used to implement the idea.	
4.	Propose work solutions to intricate prob	blems exploiting a systematic approach.	
Pre-Rec	quisite		
(As requ	uired)		
Learnin	Learning Resources:		
(As requ	(As required)		
Course	Course Outcomes:		
After co	mpletion of this Project 2 the students wi	ill be able to -	
CO1	Demonstrate a sound technical know	wledge to undertake problem identification and solution	
	approach on project topic.		
CO2	Demonstrate the ability to locate and us	e technical information from multiple sources.	
CO3	Design engineering solutions to comple	ex problems utilizing a systematic approach.	
CO4	Perform as a team-member and to focus	s on getting a working project done on time.	
CO5	Communicate effectively in speech	and writing to make presentation and prepare technical	
	document.		

FOURTH YEAR SECOND SEMESTER

8 th SEMESTER							
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRS./WEEK	CREDIT
THE	THEORY						
01	PEC(IT)805	Elective-V	3	0	0	3	3
02	OEC(IT/CS)803	Open Elective-III	3	0	0	3	3
SESS	SESSIONAL/PRACTICAL						
01	PROJ(IT)803	Project 3	0	0	16	16	8
02	CVV(IT)802	Comprehensive Viva Voce	0	0	0	0	1
тот	TOTAL 6 0 16 22 15						

PEC(IT)805

- A: E-Commerce
- B: Data Mining
- C: Mobile Communication
- D: Internet of Things
- E: Data Science

OEC(IT/CS)803

- A: Image Processing
- B: Software Project Management
- C: Social Network Analysis
- D: Quantum Computing
- E: Bioinformatics

Name of the course		E-Commerce		
Course Code: PEC(IT)805A		Semester: 8 th		
Duration: 6 months		Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3 hrs./week Mid Term I: 15 Marks				
Credit Po	ints: 3	Mid Term II: 15 Marks		
		Assignments, Test based on assignm Presentations, Attendance etc. : 20 Marks End Semester Exam: 50 Marks	nents,	Quizzes,
Objective	2:			
1.	To apply basic design tools & techniq	ues for developing E-Commerce application.		
2.	To recognize the underlying architect	ure of E-Commerce applications.		
3	To solve the common E-commerce sit	te design and maintenance problems		
Pre-Real	isite.	e design and manifeliance prostenis.		
1	Object Oriented Methodology PC(CS	/IT)513		
1.	Database Management System PC/CS	2/IT)512		
2.	Web Technology DEC(T)7044	5/11)512		
3.	Web Technology PEC(11)/04A		TT	
Module	Content		Hrs.	Marks
	Introduction to E-Commerce Definition, Scope of E-Commerce, Trade Cycle, Electronic Markets, Inter	Hardware requirements, Ecommerce and rnet Commerce.	4	
2	Business to Business E-Commerce		6	
	Electronic Data Interchange (EDI):	Technology, Standards (UN/EDIFACT),		
	Communications, Implementations,	Agreements, Security, EDI and Business,		
2	Inter-Organizational E-commerce.		5	
5	Risks: Paper Document vs. Electron document, Laws, Legal issues for Int names, Copyright, Jurisdiction issue online contract.	ternet Commerce: Trademarks and Domain es, Service provider liability, Enforceable	5	
4	Security Issues Security Solutions: Symmetric at Signature, Protocols for secure messa Protocol, Financial transactions over i	nd Asymmetric Cryptosystems, Digital aging, Secure Electronic Transaction (SET) nternet, Internet Security.	6	
5	Business to Consumer E-Commerce Consumer trade transaction, Internet, with case studies.	Page on the Web, Elements of E-Commerce	8	
6 Course C	E-business Internet bookshops, Software suppl Internet Banking, E Auctions, Onli studies.	lies and support, Electronic Newspapers, ne Share Dealing, E-Diversity with Case	7	
After con	pletion of this course the students will	be able to -		

CO1	Identify various types of module development technologies related to E-Commerce applications.
CO2	Select the module of any E-Commerce application with the help of associated technologies.
CO3	Organise different types of E-Commerce sites in the implementation of E-Commerce module.
CO4	Execute security and legal issues in E-Commerce.
CO5	Describe the knowledge of E-Business.
Learning	Resources:
-	
1	E-Commerce-Strategy, Technologies & Applications by David Whitley, TMH
1 2	E-Commerce-Strategy, Technologies & Applications by David Whitley, TMH E-Commerce- The cutting edge of business by Kamlesh K. Bajaj, TMH
1 2 3	E-Commerce-Strategy, Technologies & Applications by David Whitley, TMH E-Commerce- The cutting edge of business by Kamlesh K. Bajaj, TMH Global Electronic Commerce- Theory and Case Studies by J. Christopher Westland and Theodore

Name of the course		Data Mining			
Course Code:PEC(IT)805B		Semester: 8 th			
Duration	: 6 months	Maximum Marks: 100			
Teaching	Scheme	Examination Scheme			
Theory: 3 hrs./week		Mid Term I: 15 Marks			
Credit Po	ints: 3	Mid Term II: 15 Marks			
		Assignments, Test based on assignments	s, Surpri	ise tests,	
		Quizzes, Presentations, Attendance etc.: 20 End Semester Exam: 75 Marks (to be	manned	into 50	
		marks)	mapped	1110 50	
Objective					
1.	To understand the principles of Data v	varehousing and Data Mining.			
2.	To be familiar with the Data warehous	se architecture and its Implementation.			
3.	To know the Architecture of a Data Mining system.				
4.	To understand the various Data preprocessing Methods.				
5.	To understand and apply various Classification and Clustering techniques using tools.				
6.	To know the Association Rule Mining.				
7.	To understand various Web Mining techniques.				
Pre-Requ	isite				
1.	Database Management System PC(CS	5/IT)512			
2.	Basic Statistics				
Module	Content		Hrs.	Marks	
1.	Data Warehousing: Define Data W	Varehouse, The building blocks of a Data	4		
	warehouse, Warehouse Schema, Da	ta Warehouse Architecture, Infrastructure			
	and Metadata Management, Data Mar	ts, ETL, OLAP, MOLAP.			
2.	Introduction of Data Mining: Basi	ics of data mining, related concepts, Data	3		
	mining techniques, The KDD pro	cesses, Data Preprocessing – Cleaning,			
	Integration, Reduction, Transformatio	on and discretization.			
3.	Classification Algorithms: Defin	e Classification, Supervised Learning,	6		

	Classifier Accuracy, Decision Tree and Naïve Bayes Classifier.		
4.	Clustering: Define clustering, Types of data, Partitioning Methods (K-Means,	10	
	(Agglomerative, Divisive), Distance and similarity Function.		
5.	Association rules: Define Association Rule mining, Market Basket Analysis,	9	+
	Apriori Algorithm, FP tree Algorithm, Iceberg Queries, Advanced Association		
	Rules (concepts only), Applications of Data Mining.		
6.	Web Mining: Web Content Mining, Web Structure Mining, Web Usage Mining	4	
Course O	utcomes:	1	
After com	pletion of this course, the student will be able to-		
CO1	Implement Data warehouse system and perform business analysis with OLAP tool	s.	
CO2	Apply suitable pre-processing and visualization techniques for data analysis.		
CO3	Identify appropriate classification and clustering techniques for data analysis.		
CO4	Apply frequent pattern and association rule mining techniques for data analysis.		
CO5	Explain Web mining techniques.		
Learning Resources:			
1.	Jiawei Han, Micheline Kamber and Jian Pei "Data Mining Concepts and Techniqu	ies", Th	ird
	Edition, Elsevier, 2011, ISBN : 9780123814807		
2.	Arun K Pujari, "Data Mining Techniques", 3rd Edition, Universities Press,		
	ISBN : 9788173718847		
3.	Pang-Ning Tan, Vipin Kumar, Michael Steinbanch, "Introduction to Data Mining"	,	
	Pearson Education, ISBN: 9780321420527		
4.	Alex Berson and Stephen Smith, "Data Warehousing, Data Mining and OLAP", T	ata	
	McGraw-Hill Edition, ISBN : 9780070587410		
5.	K.P. Soman, Shyam Diwakar and V. Ajay "Insight into Data mining Theory and	Practice	e", Easter
	Economy Edition, Prentice Hall of India, 2006, ISBN :9788120328976		
6.	G. K. Gupta "Introduction to Data Mining with Case Studies", Easter Economy	Edition	, Prentice
	Hall of India, 2006, ISBN : 9788120350021		
7.	Pang-Ning Tan, Michael Steinbach and Vipin Kumar "Introduction to Data Minin	g",	
	Pearson Education, 2007, ISBN : 9789354491047		

Name of t	he course	Mobile Communication			
Course C	ode: PEC(IT)805C	Semester: 8 th			
Duration: 6 months		Maximum Marks: 100			
Teaching Scheme		Examination Scheme Two Mid term Exams: 30 Marks			
Theory: 3 hrs./week		Two Mid term Exams: 30 Marks			
Credit Points: 3		Assignment & Quiz: 10 Marks			
		Term paper, Presentation on selected topics: 10 Marks			
		End Semester Exam: 50 Marks			
Objective	:	·			
1.	To study the concept of mobile comm	nunication and evolution of mobile network			
2.	2. To understand cellular concepts and improvements cell capacity				

3.	To study wireless network and different protocol in physical and data link layer			
4.	To be familiar with mobile IP and mobile TCP			
5.	To study mobile routing and mobile security			
Pre-Requ	isite			
1.	Computer Networks [PC(CS/IT)617]			
Module	Content	Hrs.	Marks	
1	Introduction: A General Overview: History of wireless communication,	6	17	
	Multiplexing, Multiple Access basics and Different generations of Cellular			
	Telephony: GSM, GPRS, CDMA2000, UMTs, LTE			
2	Cellular Networks: Cellular Concept, Frequency Reuse, Channel Allocation	7	19	
	Management, Call Setup, Location Management, Cell Handoffs; Interference:			
	Co-channel and Adjacent Interference. System Capacity, Improving Cell			
	Capacity and Coverage: Cell Splitting, Sectoring, Repeaters and Microcell Zone			
3	Wireless Networks: Infrastructure and ad has network IEEE 802.11: System	8	22	
5	and Protocol Architecture Physical and MAC Layer, Media Access Techniques	0		
	- ALOHA CSMA Bluetooth: Architecture Radio Laver Baseband Laver			
	Link Management Protocol, L2CAP and Security, Wi-Fi and WiMax.			
4	Mobile Network Laver: Mobile IP, IP Packet Delivery, Agent Discovery,	6	17	
	Registration, Tunnelling and Encapsulation, Optimizations and Reverse			
	Tunnelling, Ad-hoc network, Proactive and reactive routing			
5	Mobile Transport Layer: Introduction, Traditional TCP: Congestion Control,	6	17	
	Slow Start, Fast Retransmit and Implications of Mobility. Classical TCP			
	Improvements: Indirect TCP, Snooping TCP, Mobile TCP and Fast			
	Retransmit/fast recovery.			
6	Mobile Security: Threats, Vulnerabilities, Attacks, Integrity, Confidentiality,	3	8	
.	malware, Policies.			
Learning	Resources:			
1	J. Schiller, Mobile Communications, Addison –Wesley			
2	T. S. Rapport, Wireless Communications, Principle and Practices			
3	Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, Prince	ciples o	f Mobile	
	Computing, Springer			
4	W.C.Y. Lee - Mobile Cellular Communications, 2nd Edition, MC Graw Hill.			
Course O	utcomes:			
After com	pletion of this course students will be able to-	4 1		
COI	Compare different mobile communication technologies and evolution of mobile n	etwork		
CO2	Illustrate different methodologies for improving cell capacity in cellular network			
CO3	Analyze different wireless communications and access techniques			
CO4	Illustrate MobileIP and different routing models for ad hoc network			
CO5	Assess different transport layer protocols in mobile communication			
CO6	Analyze threats and vulnerabilities in mobile network and relate different security	policies	5.	

Name of the course		Internet of Things		
Course Code: PEC(IT)805D		Semester: 8 th		
Duration	: 6 months	Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theory: 3 hrs./week		Mid Term I Exam: 15 Marks		
Credit Poi	ints: 3	Mid Term II Exam: 15 Marks		
		Assignments, Quiz, Presentation & Attend	ance: 2	20 Marks
		End Semester Exam: 50 Marks		
Objective	:			
1.	To learn fundamentals, genesis, Inter	net principles and architectures of IoT		
2.	Illustrate diverse methods of deploying	ng smart objects and connect them to networ	k.	
3.	To understand prototyping embedded	d devices for sensing real world entities		
4.	To gain an understanding of the role	of Application protocols and Security in IoT		
Pre-Reau	isite:			
1.	Computer Networks [PC(CS/IT)617]			
Module	Content		Hrs.	Marks
1	The Internet of Things. Overview	Evolution of IoT Challenges and impact of	8	
1	IoT. Enabling IoT and Interdepen	dence of Technologies. IoT Networking	0	
	Components, IoT Addressing Strateg	ries: Overview of the Architecture of an IP-		
	based Internet of Things: Physical/L	ink Layer, IoT Connectivity Technologies:		
	IEEE 802.15.4, Zigbee, Z-Wave, (Low-power) Wi-Fi, Bluetooth and BLE,		
	LoRa, LoRaWAN, NBIoT.			
2	IoT Network Architecture and	Design: Drivers Behind New Network	6	
	Architectures, IoT Architectures: The	e IoT World Forum (IoTWF) Standardized		
	Architecture, The Core IoT Funct	ional Stack, IoT Data Management and		
	Compute Stack: Fog Computing, E	Edge Computing, The Hierarchy of Edge,		
	Fog, and Cloud.			
3	Prototyping Embedded Devices	s: Sensors, Actuators, Micro-Electro-	6	
	Mechanical Systems (MEMS) and	Smart Objects, Wireless Sensor Network		
	and its communication protocol,	Machine to Machine Communication,		
	Introduction to Arduino and Raspber	ry Pi.		
4	IoT Communication Technologies	: Constrained nodes and networks, Low	8	
	power and lossy networks, Infrastru	acture Protocols: IPv6, 6LoWPAN, Micro		
	Internet Protocol; Discovery Protoco	ol: mDNS; Data Protocols: MQTT, CoAP,		
	AMQP; Overview of Identification p	rotocols and Device management.		
5	Interoperability: Interoperability i	issues and challenges, IoT interoperability	4	
	standards: EnOcean, DLNA, UPnP	; Overview of Frameworks, Cloud-based		
	Solutions, REST and The Web of Th	ings.		
6	IoT Case Studies and Future Tr	rends: IoT in agriculture and Healthcare,	4	
	Evolution of new paradigms in IoT, I	Future Trends: Bigdata, AI-ML, SDN.		
Learning	Resources:			
1	David Hanes, Gonzalo Salgueiro,	Patrick Grossetete, Robert Barton, Jer	ome He	enry,"IoT
	Fundamentals: Networking Technology	ogies, Protocols, and Use Cases for the Int	ernet of	Things",

	Pearson Education
2	Sudip Misra, Anandarup Mukherjee, and Arijit Roy, "Introduction to IoT". Cambridge University
	Press.
3	Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", Wiely,
4	Simone Cirani, Gianluigi Ferrari, Marco Picone, Luca Veltri, "Internet of Things: Architectures,
	Protocols and Standards", John Wiley & Sons.
5	Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill
	Education.
Course O	utcomes:
After com	pletion of this course students will be able to-
CO1	Explain the issues, Interdependence of technologies, addressing to enable IoT and some
	connectivity technologies of IoT,
CO2	Analyse the architectural models, Core IoT Functional stack, Compute stack and Data
	Management of IoT.
CO3	Compare the deployment of smart objects and the technologies to connect them to network.
CO4	Justify the requirement of communication technologies at different layers of IoT applications
CO5	Examine the IoT framework and interoperability standards involved in it.
CO6	Analyse different Applications of IoT and the future possibilities IoT.

Name of the courseData Science				
Course Code: PEC(IT)805E		Semester: 8 th		
Duration	: 6 months	Maximum Marks: 100		
Teaching Scheme Examination Scheme				
Theory: 3	hours/week	Mid Semester Exams: 30 Marks		
Tutorial: ()	Assignment, Quiz etc.: 20 Marks		
Credit Poi	nts: 3	End Semester Exam: 50 Marks		
Objective	:	1		
1.	To provide with the basic understanding techniques.	ng of data science and knowledge of profic	ient data	science
2.	To apply the concept of mathematics f	for data science to analyze the data set.		
3.	To demonstrate the machine learning	techniques that are vital for data science.		
4.	To evaluate the data visualization based on their design.			
Pre-Requisite:				
1. IT	Workshop(Python) PCL(CS/IT)305			
2. M	athematics-II(BS(CS/IT)-205)			
Module	Content		Hrs.	Marks
1	Introduction to Data Science:		2	
	Introduction, Terminology, data scient	ce process, data science toolkit, Types of		
	data, Example applications.			
2	Introduction to R:		4	
	Data types and variables, Data Frames	s, Recasting and Joining Data Frames,		

	Various mathematical operations, Control structures, Data visualization in R		
	Graphics.		
3	Linear Algebra for Data Science:	3	
	Linear equations, Distance, Hyperplanes, Halfsapces, Eigenvalues and		
	Eigenvectors.		
4	Statistical modelling:	3	
	Probability mass/density functions, Sample statistics, Hypotheses testing.		
5	Optimization for Data Science:	4	
	Unconstrained multivariate optimization, Gradient Descent Learning,		
	Constrained multivariate optimization.		
6	Data Science problems and solution Framework:	5	
	Data analysis problem solving, Data collection and analysis techniques,		
	Visualization techniques, Application development methods in data science.		
7	Data visualisation:	5	
	Introduction, Types of data visualisation, Data for visualisation: Data types,		
	Data encodings, Retinal variables, Mapping variables to encodings, Visual		
	encodings. Technologies for visualisation, Bokeh (Python).		
8	Predictive modelling and cross validation techniques:	5	
	Liner regression and Model assessment, Model building and assessment,		
	Multiple Liner regression, Multiple liner modelling and selection,		
9	Classification and clustering:	5	
	Logistic regression, performance measures. Logistic regression implementation		
	in R, KNN clustering, KNN clustering implementation in R, K-means		
	clustering, KNN clustering implementation in R, PCA in high dimensions,		
	Spectral clustering and Cheeger's inequality		
Learning	Resources:		
1	Doing Data Science, Straight Talk from The Frontline, Cathy O'Neil and Rachel	Schutt, C	O'Reilly.
2	Beginner's Guide for Data Analysis using R Programming, Jeeva Jose, Khanna I	Book Pub	lishing.
3	Data Science for Business: What You Need to Know about Data Mining a	ind Data:	analytic
	Thinking, Foster Provost and Tom Fawcett.		
Course O	utcomes:		
After com	pletion of this course the students will be able to -		
CO1	Illustrate the concepts of basic data science.		
CO2	Solve data science problems using the skills of statistical and optimization methods.		
CO3	Examine the data visualization based on their design.		
CO4	Explain various machine learning techniques in data science.		
CO5	Appraise different Classification and clustering techniques in data science.		

Name of the course	Image Processing
Course Code: OEC(IT/CS)803A	Semester: 8 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs./week	Two Mid term Exam: 30 Marks

Credit Po	oints: 3 Assignment & Quiz: 10 M	arks		
	Term paper: 05 Ma	urks		
	Presentation on selected topics: 05 Marks			
	End Semester Exam: 50 Marks			
Objectiv	ve:			
1.	To study the concept of image, definitions related to image			
2.	To study image enhancement techniques in spatial and time domain			
3.	To study noise in image and image restoration			
4.	To study segmentation and compression techniques of image			
5	To study colour image process techniques			
Dro Dog	nisito.			
	Knowladge of Fourier transform			
1.				
2.	Knowledge of digital data			
Unit	Content		Hrs	Marks
1	Introduction: Definition, Steps in Digital Image Processing, Comp	onents of an	6	15
	Image Processing System, Applications of Digital Image Processin	g, Neighbors		
	of pixel, Adjacency, Connectivity, Region and Boundary, Distand	ce Measures,		
2	Digital image formation: Light and the Electromagnetic Spee	trum Imaga	4	10
2	Sensing and Acquisition Image Sampling and Quantization Ir	nage Model	4	10
	Classification of Digital Images. Image File Formats	liuge wood,		
3	Image transformation: Need for Transform, Discrete Fourier	Transform,	4	14
	Walsh Transform, Hadamard Transform, Discrete Cosine	Transform,		
	Karheunen-Loeve transform, Hough transform			
4	Image transformation in spatial domain: Basic Gray Level Tran	nsformations,	4	14
	Histogram Processing, Convolution and Correlation, Image Smoot	hing through		
	Spatial Filters, Image Sharpening through Spatial Filters			
5	Image transformation in time domain: Image Smoothing through Frequency- 4 10			
	Domain Filters, Image Sharpening through Frequency Don	hain Filters,		
6	Image restoration: Types of Degradation Types of Image Blur (lassification	4	13
	of Image Restoration Techniques, Image Restoration Model, Line	ar and Non-		15
	linear Image Restoration Techniques, Blind Deconvolution, Clas	sification of		
	Noise in Image, Image Denoising			
7	Image segmentation: Classification of Image Segmentation Tech	niques, Edge	4	12
	based Segmentation, Classification of edges, Edge detection, Edge	dge Linking,		
	Region based approach to Segmentation, Clustering Techniques, S	Segmentation		
	based on Thresholding, Watershed Transformation, Active Contour			
8	Image compression: Spatial and Temporal Redundancy, Image	Compression	4	10
0	Models- Lossless and Lossy Compression.	tion Incore	2	5
9	Colour image processing: Colour Models, Colour Transformation, Image 2 5		3	
Learning Resources:				
Digital Image Processing, Controlves and Woods, Dearson				
1.	Digital image riocessing, Conzaives and woods, realson			

2.	Digital Image Processing, Jahne, Springer India	
3.	Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab,	
	Solomon and Breckon, Wiley	
Course O	utcomes:	
After com	pletion of this course students will be able to	
CO1	Asses different image enhancement techniques and application	
CO2	Investigate different image segmentation algorithms	
CO3	Compose different image restoration techniques for application in real time problems	
CO4	Asses different colour models for enhancement, segmentation and restoration	
CO5	5 Investigate different lossless and lossy compression	
CO6	Design of real life problems and solution through image processing	

Name of the course		SOFTWARE PROJECT MANAGEMENT		
Course Code: OEC(IT/CS)803B		Semester: 8 TH		
Duration: 6 months		Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3 hrs/week Mid Term I Exam: 15 Marks				
Credit Poi	nts: 3	Mid Term II Exam:	15 Marks	
		Class performance & Attendance: 2	20 Marks	
		End Semester Exam & Viva:	0 Marks	
Objective	:			
1.	To understand the Software Project P	lanning and Evaluation techniques.		
2.	To plan and manage projects at each stage of the software development life cycle.			
3.	To develop skills to manage the various phases involved in project management and people management.			
4.	To deliver successful software projects that support organization 's strategic goals.			
Pre-Requisite				
1.	Software Engineering – PEC(IT)602A	A		
Module	Content		Hrs.	Marks
1	SOFTWARE PROJECT		6	
	Concept of Project, Software pro	oject, Importance of Software Project		
	Management, Activities, Methodolog	gies, Categorization of Software Projects,		
	Setting objectives, Project portfolio	Management, Risk evaluation, Strategic		
	program Management, Stepwise Proje	ect Planning.		
2	PROJECT LIFE CYCLE AND EF	FORT ESTIMATION	8	
	Software process and Process Mode	els – Choice of Process models – Rapid		
	Application development, Agile me	ethods – Dynamic System Development		
	Method, Basics of Software estimation	on – Effort and Cost estimation techniques		
	- COSMIC Full function points - C	COCOMO II - a Parametric Productivity		
	Model.			

3	ACTIVITY PLANNING AND RISK MANAGEMENT	8	
	Objectives of Activity planning, Project schedules, Activities, Sequencing and		
	scheduling, Gantt chart, Network Planning models, Critical path method, PERT		
	technique, Resource Allocation, Cost schedules. Industrial strength software:		
	features & challenges.		
	Risk identification, Assessment, Risk Planning, Risk Management: Proactive &		
	Reactive risk management.		
4	PROJECT MANAGEMENT AND CONTROL	8	
	Framework for Management and control, Collection of data, Visualizing		
	progress, Cost monitoring, Earned Value Analysis,		
	Project tracking, change control, Contract Management. Software		
	Configuration Management- need, basic configuration, baseline of		
	Concept of quality quality attributes iron triangle TOM		
5	STAFFING IN SOFTWARE PROJECTS	6	
	Managing people. Organizational behavior. Best methods of staff selection. The		
	Oldham – Hackman job characteristic model. Health and Safety. Ethical and		
	Professional concerns – Working in teams, Decision making, Organizational		
	structures, Dispersed and Virtual teams, Leadership, role of project manager.		
Course O	utcomes:	1	1
After com	pletion of the course students will able to-		
CO1	Assess Project Management principles while developing software.		
CO2	Identify the basic project management concepts, framework and the process mode	els.	
CO3	Review about software process models and software effort estimation techniques.		
CO4	Estimate the risks involved in various project activities.		
CO5	Define the checkpoints, project reporting structure, project progress and track	king me	chanisms
	using project management principles.		
CO6	Determine staff selection process and the issues related to people management.		
Learning	Resources:		
1	Bob Hughes, Mike Cotterell and Rajib Mall: Software Project Management - TM	IH	
2	Robert K. Wysocki —Effective Software Project Management – Wiley		
3	Software Engineering: A Practitioner's Approach-Roger PressmanTMH		
4	Ingenieria del Software Ian SommervillePearson		
5	Walker Royce: -Software Project Management - Addison-Wesley		
6	Gopalaswamy Ramesh, —Managing Global Software Projects- McGraw Hill		
7	Software Engineering- Pankaj Jalote- Wiley India		

Name of the course	Social Network Analysis
Course Code: OEC(IT/CS)803C	Semester: 8 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs./week	Two Mid term Exam: 30 Marks

Credit Po	redit Points: 3 Assignment & Quiz: 10 Marks			
		Term paper: 05 Marks		
	Presentation on selected topics: 05 Marks			
	End Semester Exam: 50 Marks			
Objectiv	2:			
1.	To study the concept of online social	network in graph theoretic concept		
2.	To study centrality measures of onlin	e social network graph		
3.	To study social network content and a	analyze the sentiment		
4.	To study rumour detection in social 1	nedia		
5.	To study influence maximization and	l minimization in social media		
Pre-Requ	lisite			
1.	Discrete mathematics BS(CS/IT)408			
2.	DBMS PC(CS/IT)512			
Module	Content		Hrs.	Marks
1	Introduction: A General Overview:	online social network(OSN), online social	2	6
	network as graph, topology, Erdos	Reyni concept of graph, concept of six		-
	degree separation, small world net	twork, large scale network, propagation		
	approaches through social network gr	aph		
2	Centrality measures: Graph cent	rality concept, Node degree centrality,	6	15
	Betweenness centrality, closeness cen	ntrality, page rank centrality, Eigen vector		
	centrality, K-core			
3	Sentiment analysis: Sentiment: posit	ive, negative and neutral. NLP for analysis	5	15
	of sentiment, machine learning approa	aches for analysis of sentiment in OSN	-	
4	Rumour detection: Detection of	rumour in social network, content based	5	15
	rumour detection, generating dictiona	ry for identifying misinformation, machine		
	detection identifying the profile generating rumour			
5	Influence maximization: Introduc	tory concepts Different approaches of	6	15
	influence maximization. Recent trend	s in influence maximization, applications.		10
6	Influence minimization: Introduct	tory concepts. Different approaches of	4	12
	influence minimization. Application	of influence minimization for rumour		
	content in OSN			
7	Clustering and community detection	on: Community detection in online social	4	10
	network, clustering, clustering coeffic	cient, modularity, transitivity, average path		
	length			- 10
8	Application of SNA: Real world soci	al network issues and solution	4	12
Learning	Resources:			
1.	Analyzing Social Networks Using R; Stephen P. Borgatti et al, Sage publishing, 2022			
2.	Social Network Analysis with Applications, <u>Ian McCulloh</u> , <u>Helen Armstrong</u> , <u>Anthony Johnson</u> , Wiley, 2013		<u>hnson</u> ,	
Course Outcomes:				
After completion of this course students will be able to				
CO1	Assess proficiency and understanding of social networks for business and professional use		2	

CO2	Investigate different use of social network analysis and social network developer tools
CO3	Assess different centrality measures and community detection mechanisms for different
	applications
CO4	Compose different influence maximization/minimization problems
CO5	Investigate different content of social network and validate the sentiments and purposes
CO6	Design real life solution for online social network issues

Name of the course		QUANTUM COMPUTING		
Course Code: OEC(IT/CS))803D		Semester: 8 th		
Duration: 6 months		Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory:	3 hrs./week	Mid Term I: 15 Marks		
Credit Po	ints: 3	Mid Term II: 15 Marks		
		Assignment, Test based on assignment	s, Surpr	ise tests,
		Quizzes, Presentations, Attendance etc. :	20 Ma	rks
		End Semester Exam: 50 Marks		
Objective	28:			
1.	To develop mathematical foundation f	or application in Quantum Computing.		
2.	To introduce the fundamentals of qu quantum mechanics.	uantum computing and understand the ba	asic post	ulates of
3.	To apply quantum algorithms for solving various problems.			
Pre-Requisites :				
1.	Mathematics I [BS(CS/IT)101], Physics [BS(CS/IT)]102			
2.	Design and Analysis of Algorithms [PC(CS/IT)406]			
Module	Content		Hrs.	Marks
1	Mathematical Preliminaries: Repres	sentation of states in linear vector space,	8	
	Basis and Dimensions, Inner Produ-	ct, Orthonormality, Bra-Ket Formalism,		
	Hilbert Space, Hermitian, Unitary, N	formal and Projection Operators, Tensor		
	Product, Density Operator.			
2	Introduction to Quantum Mecha Probabilistic Nature of Quantum S	nics: Classical Deterministic Systems,	6	
	Schrodinger's Equation and Born Ru	le Wave Particle Duality Postulates of		
	Quantum Mechanics Dirac Forma	lism Stern-Gerlach Experiment and		
	Measurement, Electron Spin, Superpos	sition of States. Ouantum Entanglement.		
3	Quantum Circuits: Bits and Qubits,	Bloch sphere	8	
	representation of a qubit, multiple qub	bits. Classical gates versus quantum gates,		
	single qubit gates, multiple qubit gates	, design of quantum circuits.		
4	Quantum Information and Crypto	ography: Comparison between classical	8	
	and quantum information theory. Bell	l states. Quantum teleportation. Quantum		
-	Cryptography, no cloning theorem.			
5	Quantum Algorithms: Introductio	on to quantum algorithm, quantum	8	
	parallelism, Deutsch's algorithm, Deu	tsch's-Jozsa algorithm, Shor factorization		

	algorithm, Grover Search algorithm, Simon's algorithm, Quantum Fourier	
	Transform.	
Course O	Dutcomes:	
After com	pletion of this course students will be able to-	
CO1	Understand Hilbert Space and Operators.	
CO2	Explain basic concepts of quantum mechanics as applied in Quantum computing.	
CO3	Develop quantum logic gate circuits.	
CO4	Differentiate the classical and quantum information processing concepts.	
CO5	Implementation of simple quantum algorithms using quantum parallelism.	
Learning Resources:		
1.	Quantum Computation and Quantum Information, Michael A. Nielsen and Isaac L. Chuang,	
	Cambridge University Press 2010.	
2.	Quantum computing explained, David McMahon, Wiley-interscience, John Wiley & Sons, Inc.	
	Publication 2008.	
3.	Quantum computing for computer scientists, Noson S. Yanofsky, Mirco A. Mannucci, Cambridge	
	University Press 2008	
4.	Introduction to Quantum Mechanics, 2nd Edition, David J. Griffiths, Prentice Hall New Jersey	
	1995.	
5.	Reskill Lecture notes http://www.theory.caltech.edu/~preskill/ph229/.Engineering Circuit	
	Analysis, W.H. Hyat, J.E. Kemmerly & S.M. Durbin, The Mc Graw Hill	
6.	Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II: Basic Tools	
	and Special Topics, Benenti G., Casati G. and Strini G, World Scientific.	

Name of the course:	BIOINFORMATICS	
Course Code: OEC(IT/CS)803E	Semester: 8 th	
Duration: 6 months	Maximum Marks: 100	
Teaching Scheme	Examination Scheme	
Theory Contact Hrs.: 3 hrs/week	Mid Semester-1 Exam: 15 Marks	
Tutorial Contact Hrs.:	Mid Semester-2 Exam: 15 Marks	
Credit Point: 3	Assignment, Quiz & class attendance: 20 Marks	
	End Semester Exam: 75 Marks (to be mapped into 50 marks)	
Objective:		
1. To provide an introduction to what bi	oinformatics is and why it is important	
2. To describe how bioinformatics data	To describe how bioinformatics data is stored and organized	
3. To classify different types of Biologic	To classify different types of Biological Databases	
4. To learn how to extract sequence from	To learn how to extract sequence from a database	
5. To describe the basics of theoretical protein structure prediction		
Pre-Requisite:		
1. Programming for Problem Solving [I	Programming for Problem Solving [ES(CS/IT)204]	
2. High School Biology		

Module	Content	Hrs.	Marks	
1.	Definition and Scope	05		
	Definition, Scope and importance of bioinformatics, Role of internet in			
	bioinformatics			
2.	Biological Data and Management	07		
	Characteristics of biological data-types and features, Data management-			
	organization of data, Analysis and Introduction of Biological Data Management System			
3.	Biological Database	08		
	Relevance and scope of biological databases, Classification of Biological			
	database, DNA and proteins databases-NCBI, EBI, Uniprot, Omics in biology -			
	genomics, transcriptomics, proteomics and metabolomics			
4.	Sequence Analysis	09		
	Outline of sequence, Structure and functions of DNA and Proteins, Introduction			
	and Application to Sequence analysis, Sequence alignment- introduction,			
5	Structural Principles	07	-	
5.	Overview of macromolecular structures - DNA and proteins. Protein structure	07		
	database –CATH SCOP PDB Basics of theoretical protein structure			
	nrediction			
Course O	utcomes:		<u> </u>	
After com	pletion of this course the students will be able to -			
CO1	describe the scope and importance of Bioinformatics and role of internet in Bioinformatics			
CO2	characterize and manage the different types of Biological data			
CO3	locate and extract data from key bioinformatics databases and resources			
CO4	apply the basics of sequence alignment and analysis			
CO5	describe the biological macromolecular structures and structure prediction method	ds		
Learning Resources:				
1.	Dr. Zhumar Ghosh, Bibekanand Mallick, Bioinformatics, Oxford University Press India, ISBN:		a, ISBN:	
	9780195692303			
2.	Orpita Bosu, Simminder Kaur Thukral, Bioinformatics - Databases, Tools,	and Alg	gorithms,	
	Oxford University Press India, ISBN: 9780195676839			
3.	S.C. Rastogi, Namita Mendiratta, Parag Rastogi, Bioinformatics - Concepts, Skills &		Skills &	
	Applications, CBS Publishers & Distributors, ISBN: 9788123914824			
4.	Prakash S. Lohar, Bioinformatics, Mjp Publishers, ISBN: 9788180940668			
5.	Jin Xiong, Essential Bioinformatics, Cambridge, ISBN: 9780521706100			
6.	D. W. Mount, Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor Laboratory			
	Press, ISBN: 978-0879697129			

Name of the course	Project 3
Course Code: PROJ(IT)803	Semester: 8 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 16 hours/week	Internal Evaluation: 80 Marks

Credit P	Points: 8	End Semester (External) Exam: 20 Marks		
Objecti	Objective:			
1.	Design the solution with suitable techniques, resources and modern tools revealing reliability and			
	ethical behaviour in industrial practice.			
2.	To apply the concept related to mathematics and Information Technology			
3.	To demonstrate the techniques those have been used to implement the idea.			
4.	Discuss the experimental results			
Pre-Requisite				
(As required)				
Learning Resources:				
(As required)				
Course Outcomes:				
After completion of this Project 3 the students will be able to -				
CO1	Design the solution with appropriate	e techniques, resources and contemporary tools exhibiting		
	integrity and ethical behavior in engine	eering practice.		
CO2	Manage project schedule, resources, an	d work assignments to ensure timely completion.		
CO3	Perform professionally as a team mem	ber, accepting responsibility, taking initiative, and providing		
	leadership necessary to ensure Project	success.		
CO4	Perform formal and informal Comm	unication with team members to prepare presentation and		
	technical documentation (report).			
CO5	Defend the performance of the implem	ented project and the implication of the solution.		