Curriculum for M. Tech. in Information Technology

(Applicable from the academic session 2021-2022)

Department of Information Technology

Government College of Engineering & Ceramic Technology (An Autonomous Institution under MAKUT) 73, A.C Banerjee Lane Kolkata-700010

COURSE STRUCTURE

	1 st SEMESTER						
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRs./WEEK	CREDIT
THEC	DRY						
01	ITPC101	Advanced Engineering Mathematics	3	1	0	4	4
02	ITPC102	Advanced Computer Architecture	3	1	0	4	4
03	ITPC103	Computer Network	3	1	0	4	4
04	ITPEC101	A: Internet and Web Technology	3	0	0	3	3
		B: Advanced Software Engineering					
		C: Advanced Data Structures					
05	ITPEC102	A: Information Theory and Coding	3	0	0	3	3
		B: Pattern Recognition					
		C: Digital Signal Processing					
		D: Cloud Computing					
06	ITAUD101	A: Indian Constitution	2	0	0	2	0
		B: Value Education					
		C: Pedagogy Studies					
		D: Stress Management by Yoga					
SESSI	ONAL/PRACTICAL		1		•		
01	ITPCL101	PC Lab. I	0	0	3	3	1.5
02	ITPEC101(A/B/C)L	PEC101 Lab.	0	0	3	3	1.5
03	ITASGN101	Seminar	0	0	0	0	1
TOTA	ÅL.	·	17	3	6	26	22
		2 nd SEMESTER					
SL. NO.	PAPER CODE	PAPER NAME	L	т	Р	CONTACT HRs./WEEK	CREDIT
THEC	DRY						
01	ITPC204	Advanced Operating System	3	1	0	4	4
02	ITPC205	Database Design	3	1	0	4	4
03	ITPC206	Advanced Algorithm	3	1	0	4	4
04	ITPEC203	A: Image and video Processing	3	0	0	3	3
		B: Machine Learning					
		C: Soft Computing					
05	ITPEC204	A: Mobile Computing	3	0	0	3	3
		B: IoT and Its Application					
		C: Data Mining					
06	ITRES201	Research Methodology and IPR	2	0	0	2	2
SESSI	ONAL/PRACTICAL						
01	ITPCL202	PC Lab. II	0	0	3	3	1.5

02	ITPEC203(A/B/C)L	ITPEC203 Lab.	0	0	3	3	1.5
03	ITPRJ201	Dissertation (Part 1)	0	0	4	4	2
ΤΟΤΑ	L		17	3	10	30	25
		3 rd SEMESTER	•		•	1	
SL. NO.	PAPER CODE	PAPER NAME	L	т	Р	CONTACT HRs./WEEK	CREDIT
THEO	PRY						
01 SESSI 01 02	ITOEC301 ONAL/PRACTICAL ITPRJ302 ITASGN302	A: Quantum Computing B: Big Data Analytics C: Software Project Management D: Information and System Security E: Social Network Analysis Dissertation (Part 2) Comprehensive Viva-voce	3 0 0	0 0 0 0	0 18 0	3 18 0	3 9 1
ΤΟΤΑ	 L		3	0	18	21	13
		4 th SEMESTER					
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Ρ	CONTACT HRs./WEEK	CREDIT
SESSI	ONAL/PRACTICAL						
01	ITPRJ403	Dissertation (Part 3)	0	0	24	24	12
TOTA	TOTAL		0	0	24	24	12

(Total Credit=22+25+13+12=72)

FIRST SEMESTER

		1 st SEMESTER					
SL. NO.	PAPER CODE	PAPER NAME	L	т	Р	CONTACT HRs./WEEK	CREDIT
THEC	DRY						
01	ITPC101	Advanced Engineering Mathematics	3	1	0	4	4
02	ITPC102	Advanced Computer Architecture	3	1	0	4	4
03	ITPC103	Computer Network	3	1	0	4	4
04	ITPEC101	A: Internet and Web Technology	3	0	0	3	3
		B: Advanced Software Engineering					
		C: Advanced Data Structures					
05	ITPEC102	A: Information Theory and Coding	3	0	0	3	3
		B: Pattern Recognition					
		C: Digital Signal Processing					
		D: Cloud Computing					
06	ITAUD101	A: Indian Constitution	2	0	0	2	0
		B: Value Education					
		C: Pedagogy Studies					
		D: Stress Management by Yoga					
SESS	SESSIONAL/PRACTICAL						
01	ITPCL101	PC Lab. I	0	0	3	3	1.5
02	ITPEC101(A/B/C)L	PEC101 Lab.	0	0	3	3	1.5
03	ITASGN101	Seminar	0	0	0	0	1
TOTAL		17	3	6	26	22	

Name of the course		ADVANCED ENGINEERING MATHEMATICS			
Course Co	ode: ITPC101	Semester: 1 st			
Duration: 6 months		Maximum Marks: 100			
Teaching Scheme		Examination Scheme			
Theory: 3 hrs/week		Two Mid Term Exams: 30 Marks			
Tutorial: 1 hr/week		Assignments , Quiz etc.: 20 Marks			
Credit Points: 4		End Semester Exam: 50 Marks			
Objective	::				
1.	To understand Fourier series representa	ation of Periodic signals.			
2.	To understand basics z transform.				
3.	To understand linear spaces its basis and dimension with corresponding applications in the field of				
	computer sciences.				

4.	To learn the concept of eigen values, eigen vectors, diagonalisation of matrices for	understa	nding		
	engineering problems.				
5.	To understand counting techniques and combinatorics in the context of discrete probability.				
6.	To learn recurrence relations and generating functions.				
7.	To understand basic concept of modelling system using fuzzy set.				
Pre-Requ	isite:				
1.	Discrete Mathematics				
2.	Engineering Mathematics (UG level)				
Module	Content	Hours	Marks		
1	Integral Transform: Fourier Series and Transform: Periodic functions,	8			
	Trigonometric functions, Trigonometric Series, Fourier series, Dirichlet conditions,				
	Euler formula for Fourier coefficients, Even and Odd functions, Half range series				
	expansion, Parseval's formula.				
	Fourier transform, Properties of Fourier transform, Fourier sine and cosine				
	transform, Convolution theorem, First Fourier transform.				
2	Z- Transform: Sequence, Representation of sequence, Basic operations on	4			
	sequences, Z-transforms, Properties of Z-transforms, Change of scale, Shifting				
	property, Inverse Z-transform, Solution of difference equation, Region of				
	convergence.				
3	Advanced Linear Algebra:	10			
	Vector / Linear Space: Definitions and examples, Subspace, Union and				
	intersection of subspaces, Linear sum of two subspaces, Linear combination,				
	independence and dependence, Linear span, Generators of vector space, Finite				
	dimensional vector space, Replacement Theorem, Extension theorem, Statement				
	of the result that any two bases of a finite dimensional vector space have same				
	number of elements. Dimension of a vector space, Extraction of basis, formation				
	of basis with special emphasis on Rn ($n \le 3$),				
	Eigenvalue and eigenvectors of matrices, Caley Hamilton Theorem, Simple				
	properties of eigenvalues and eigenvectors- for symmetric, and general matrices,				
	Diagonalisation.				
4	Counting Technique: Permutations, Combinations, Binomial Coefficients, Pigeon-	3			
	hole principle, Principles of inclusion and exclusions.				
5	Recurrence Relation: Formulation, modeling, of different counting problems in	8			
	terms of recurrence relation, Solution of Linear recurrence relations with				
	constant coefficients (upto second order) by 1) iterative method, 2) characteristic				
	roots method, 3) generating functions method.				
	Stochastic Process: Review of probability, Random variable, Random process,				
	Random walk, Brownian motion, Markov process.				
6	Fuzzy sets: Introduction, crispness, vagueness, fuzziness, uncertainty. Basic	7			
	definitions and examples, basic set theoretic operations – union, intersection,				

	complementation and their simple properties.			
	Soft sets: Introduction, Definition with examples, Soft set as generalization of			
	fuzzy set, complement, null soft set, Absolute soft set, definition of general binary			
	operation, union, intersection, simple properties – De Morgan's law, soft point,			
	soft function and soft inverse function, simple properties.			
Course O	utcomes:			
After com	pletion of this course, the learners will be able to -			
CO1	write periodic function in terms of sine and cosine terms in Fourier series and also	to get kno	owledge	
	in Fourier transforms.			
CO2	solve engineering problems using Z-transformation			
CO3	recognize the concept of the terms span, linear independence, basis and dimension	n and app	oly these	
	concepts to various vector spaces and subspaces.			
CO4	solve problems involving recurrence relations and generating functions			
CO5	solve problems using counting techniques and combinatorics in the context of disc	rete prob	ability.	
CO6	analyse statistical data by using fuzzy logic methods			
Learning	Resources:			
1	Loknath Debnath – Integral transforms and their Applications.			
2	B. Chakraborty and M. K. Sen – Discrete mathematics.			
3	Koshy – Discrete Mathematics and Application			
4	Jyoti Medhi – Stochastic Process			
5	S. K. Mapa -Abstract and Linear Algebra			
6	Zimmermann - Fuzzy Set Theory			
7	Soft Set Theory – P.K.Maji et. al. – Compu. Math. Appl. 45(2003) 555-562.			
8	B.Davies - Integral transforms and their Applications.			
9	Kenneth H. Rosen- Discrete mathematics and their Applications.			
10	Friedberg,insel,Spence –Linear Algebra			
11	Barnabas Bede-Mathematics of Fuzzy sets and Fuzzy logic			

Name of the course	ADVANCED COMPUTER ARCHITECTURE
Course Code: ITPC102	Semester: 1 st
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Two Mid Term Exams: 30 Marks
Tutorial: 1 hr/week	Assignment & Quiz: 10 Marks
Credit Points: 4	Term paper: 05 Marks
	Presentation on selected topics: 05 Marks

	End Semester Exam: 50 Marks				
Objective	:				
1.	To understand the pipeline and parallelism concepts in Programming				
2.	To introduce the advanced processor architectures.				
3.	To study Memory parallel architecture and interleaving				
4.	To study I/O, interface and Bus architecture				
5.	Case study on parallel architecture processor				
6.	To learn reconfigurable architectures.				
Pre-Requ	isite:				
1.	Computer Organization (UG level)				
2.	Computer architecture(UG level)				
Module	Content	Hours	Marks		
1	Introduction : Introduction to High Performance Computing: Overview, Pipeline vs Parallel Processing. Taxonomy of Parallel Architectures : 1) SISD, 2) SIMD, 3) MIMD, 4) MISD. Pipeline Processing : Pipeline Performance, design of arithmetic pipelines Pipeline hazards – structural hazards, data hazards, control hazards & their solutions Pipeline scheduling Theory: Greedy pipeline scheduling algorithm – Static and Dynamic Pipelining.	10	30		
2	Advanced Processor: RISC architecture, RISC VS CISC, VLIW architecture Vector and Array Processors, Super-scalar machines, Distributed computing architectures, Data flow architectures.	4	10		
3	Memory: A brief overview on cache memory, paging, segmentation, virtualization. Memory parallel architecture and memory interleaving, case study on SDRAM. Flash memory: Device architecture and applications, NAND and NOR structures.	8	22		
4	Interface: I/O system performances, Types of buses, Bus architecture, configuration, control, performance analysis, Bus arbitration, interface with operating systems, controller, direct memory access, Disk array (RAID)	6	18		
5	FPGA : Introduction to FPGA and Reconfigurable architecture.	4	10		
6	Case study on parallel architecture: ARM processor (Intel), Power PC (Motorola)	4	10		
Course Outcomes: After completion of this course, the learners will be able to -					
CO1	Demonstrate concepts of parallelism in hardware				
CO2	Interpret performance of different pipelined processors.				
СОЗ	Asses memory architecture in context of memory parallelism and interleaving				
CO4	Investigate different bus architecture and arbitration schemes.				
CO5	Compose different components of processor, memory and interface for analysis of architectural developments.	recent			
CO6	Explain reconfigurable architecture.				

Learning	Resources:
1	Hayes, —Computer Architecture and Organization, McGraw-Hill
2	Stallings William, "Computer organization and architecture, designing for performance", Prentice Hall of India.
3	J. L. Hennessy and D. A. Patterson, "Computer architecture: a quantitative approach", Harcourt Asia, Singapore.
4	Hwang and Briggs, —Computer Architecture and Parallel Processing, TMH.
5	Hamacher, Computer Organization, McGraw-Hill
6	M. R. Bhujade, Parallel Computing, Newage International Pvt. Ltd

Name of	the course 0	COMPUTER NETWORK				
Course Co	ode: ITPC103 5	Semester: 1 st				
Duration	6 months	Maximum Marks: 100				
Teaching	Scheme I	Examination Scheme				
Theory: 3	Bhrs/week	Mid Term Exam. 1: 15 Marks				
Tutorial: 1	Lhr/week	Mid Term Exam. 2: 15 Marks				
Credit Po	ints: 4	Assignment, Test based on assignment, Q	uiz,			
	1	Presentations, Attendance, Term paper et	c.: 20 Ma	arks		
	1	End Semester Exam.: 50 Marks				
Objective	:					
1.	To build an understanding of the fundamental concepts of computer networking.					
2.	To Know about the design issues, services and protocols of Network layer.					
3.	To study different services, protocols of transport layer.					
4.	To understand congestion and QoS issues of computer network.					
5.	To study some important application laye	r protocols				
6.	To learn delay, performance issues and ba	asic management issues of networking.				
Pre-Requ	Pre-Requisite:					
1.	Computer Network (UG level)					
Module	Content		Hours	Marks		
1	Introduction: Computer networks, Inter	rnetworking and the Internet, Layered	6			
	Protocol concept and Reference models; Switching, Overview of underlying					
	Technologies (PPP, Multiple Access, Ethernet, ADSL), Error and flow control.					
2	Network layer design issues: Services, Network layer Addressing, Autonomous 6					
	system, Interior and Exterior Routing, Routing Algorithms (Distance vector, Link					
	State and Hierarchical), Broadcast Routin	ng Techniques: Flooding, Spanning Tree;				
	Routing Table, Multicast Routing: Overvie	w.				

3	Network layer protocols: IPv4: Datagram, fragmentation, Addressing (classful	8		
	and classless); A brief overview of IPv6, NAT, ICMP, Routing Protocols (RIP, OSPF,			
	BGP), ARP, DHCP.			
4	Transport layer: Services, Connectionless and connection-oriented services,	7		
	Transport Layer Protocols: UDP, TCP, SCTP, Congestion control: General			
	principles, Congestion Prevention Policies, RED, ECN, ELN, Congestion Control in			
	TCP (TCP TAHOE, TCP Reno), Quality of Service: Characteristics & Traffic Shaping			
	technique			
5	Application layer protocols: DNS, HTTP(s), protocols for file transfer, E-mail and	4		
	remote login.			
6	Delay and Performance: Basic Queuing Models, Arrival Processes, Service time	5		
	Queuing System, M/M/1 Queue and basic multiplexer model, Performance			
	measures and Little's result, The M/G/1 model, Erlang Formula and M/M/c/c			
	system priority queue; Network Management: Overview, SNMP, Management			
	Information Base.			
Course O	utcomes:			
After con	ppletion of this course, the learners will be able to -			
CO1	explain the fundamental concepts of data communication, computer networki	ng to ana	alyse the	
	functionalities of different layers of OSI–ISO and TCP/IP protocol suite.			
CO2	justify the design issues of network layer to evaluate the needs of different routing protocols			
CO3	explain different protocols and addressing schemes of network and transport layers			
CO4	compare different transport layer protocols, congestion control issues and QoS pro	visioning.		
CO5	illustrate the concepts of some common application layer protocols.			
CO6	identify some delay and performance issues required in basic network management scenarios.			
Learning	Resources:			
1	Behrouz A. Forouzan, —Data Communications and Networking, 4th Edition, Tata N	1cGraw-H	ill.	
2	James F. Kuross, Keith W. Ross, —Computer Networking, A Top-Down Approach Featuring the			
	Internet, Third Edition, Addison Wesley.			
3	Behrouz A. Forouzan, —TCP/IP Protocol Suite, 2nd Edition, Tata McGraw-Hill.			
4	Andrew S. Tanenbaum, —Computer Networks, 6th Edition, PHI Learning.			
5	A Leon Garcia, Indra Widjaja, —Communication Networks, 2nd Edition, McGraw-H	ill.		
6	Larry L. Peterson, Bruce S. Davie - Computer Networks: A Systems Approach, 5th Ec	dition, Els	evier.	

Name of the course	INTERNET & WEB TECHNOLOGY
Course Code: ITPEC101A	Semester: 1 st
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme

Theory: 3 hrs./week		Two Mid Semester Exams: 30 Marks		
Credit Points: 3		Assignment , Quiz etc. : 20 Marks		
	End Semester Exam: 50 Marks			
Objective	::	·		
1.	To build an understanding of the basic of	oncepts of Internetworking, its services an	d security	/.
2.	To apply different web design tools & te	chniques for developing web application.		
3.	To recognize the underlying architecture	e of web-based applications.		
4.	To solve the common ecommerce site d	esign and maintenance problems.		
Pre-Requ	isite:			
1.	Object Oriented Methodology (UG level))		
2.	Database Management System (UG leve	l)		
Module	Content		Hours	Marks
1	Module1: Internet Principles		9	
	Internetworking principles and service	es, Internet Architecture, Client Server		
	Model, Internet Security in different lay	vers, DNS, E-mail and its security, World		
	Wide Web, HTTP/ HTTPs.			
2	Module2: JavaScript and XML		6	
	Variables, Expressions, Control Stateme	ents, Arrays, Objects, Functions, Events		
	and Validations, Regular Expressions, Document, Document Type Definition,			
	XML Schema, Document Object Model, Presenting XML, Using XML Parsers:			
	DOM and SAX			
3	Module3: JDBC and Java Beans		5	
	Introduction to Java database cor	nnectivity, JDBC Drivers, establishing		
	connection, query execution, Result pr	rocessing, Database Metadata, Working		
	with PreparedStatement, Callable Sta	atement, Introduction to Java Beans,		
	Naming Patterns for Bean Properties,	Simple Properties, Indexed Properties,		
	Bouria Properties, Constrained Prop	erties, Bean mito Classes, JavaBeans		
4	Module4: Java Servlet		5	
	Server-side programming Servlet APL	The Servlet Life Cycle, Reading Servlet		
	parameters. Reading Initialization pa	arameters. Handling Http Request &		
	Responses, Processing form data, D	atabase connectivity through servlet,		
	ServletConfig and ServletConext, Servlet			
	Cookie, Sessions, Session tracking with servlet.			
5	Module5: Java Server Pages		5	
	The Anatomy of a JSP Page, JSP Life Cycle, JSP Architecture, JSP Elements,			
	Directives, Action Elements, Objects, Generating Dynamic Content, Requests and			
	Users Passing Control, Data between Pages, Sharing Session and Application			
	Data			
6	Module6: Enterprise Java Beans and Distributed Objects		8	

	Session Bean, Entity Bean, Message Driven Bean, Writing Enterprise Bean,		
	Introduction to EJB, Enterprise Bean Architecture, Benefits of Enterprise Bean,		
	Types of Enterprise Bean, Writing Enterprise Beans.		
Course O	utcomes:		
After con	npletion of this course, the learners will be able to -		
CO1	Illustrate the concepts of Internetworking and some of its common services and security.		
CO2	Apply the skills related to client-side validation technique and able to recognize different aspects of		
	document type definition in web design.		
CO3	Design the front-end of any web application with the help of associated technologies and		
CO4	Categorize different database management system and also able to perform different database		
	CRUD operations.		
CO5	Create dynamic web pages and also be able to develop server-side scripting for server-side		
	processing.		
CO6	Apply user sessions in dynamic web project and also be able to design enterprise business logic.		
Learning	Resources:		
1	Java EE for Beginners, Sharanam Shah, SPD Publications.		
2	Beginning Java EE 5: From Novice to Professional, Mukhar and Zelenak, Apress.		
3	Behrouz A. Forouzan, —Data Communications and Networking, 4th Edition, Tata McGraw-Hill.		
4	Professional Java Server Programming, Allamaraju, WROX Publishers.		
5	Java Server Programming Java EE 7 (J2EE 1.7), Kogent Learning Solutions Inc.		

Name	of the course	ADVANCED SOFTWARE ENGINEERIN	G
Course	e Code: ITPEC101B	Semester: 1ST	
Durati	ion: 6 months	Maximum Marks: 100	
Teach	ing Scheme	Examination Scheme	
Theory	y: 3 hrs/week	Mid Term I Exam:	15 Marks
Credit	Points: 3	Mid Term II Exam:	15 Marks
		Class performance & Attendance:	20 Marks
		End Semester Exam & Viva:	50 Marks
Object	tive:	· ·	
1.	To understand the procedures and proper	rties of software development models.	
2.	To understand software design and softw	are testing activities.	
3.	To analyze the software reliability and software quality.		
4.	To apply different techniques for software project management.		
Pre-Re	equisite:		
	Programming Language		

Module	Content	Hours	Marks
1	Software Development	8	
	Overview of Information System, Business System Concept, System Development		
	Life Cycle, SRS design, Waterfall Model, Spiral Model, RAD model, V model, Agile		
	model, Feasibility Analysis, Cost- Benefit Analysis, COCOMO model- Basic,		
	Intermediate and Detailed, Function point analysis, Halstead metrics.		
2	Software Design	6	
	Fundamental issues of Software Design, Coupling & Cohesion, Top-Down and		
	Bottom-Up design; Decision tree, decision table and structured English;		
	Functional vs. Object- Oriented approach, Unified modeling language (UML), User		
	Interface design	-	
3	Software Testing	6	
	Software coding standards, Software Testing – Levels of Testing, Black-box &		
	White-box testing, Cyclomatic complexity, Mutation testing, Test case		
	generation, Testing life cycle, Validation & Verification, Acceptance testing- Alpha		
4	testing & Beta testing.	6	
4	Software Reliability	D	
	Prediction model & Estimation model MTTE MTRE Software availability		
	hazards: SELCMM & ISO DSD & Six sigma		
5	Software Quality	4	
	Software quality guality factors. McCall's Quality Factors. Software quality		
	assurance (SQA), Total Quality Management (TQM),		
6	Software Project Management	6	
	Software Project Management – Project Scheduling, Staffing, Software		
	Configuration Management, Project Monitoring, Risk Management, Software		
	maintenance, Software reuse, Client-Server Software development. Project		
	management tools- WBS, Gantt chart, PERT, CPM		
Course O	utcomes:	L	
After com	pletion of the course students will able to -		
CO1	Review and analyze different types of software development models.		
CO2	Select and apply different design tools and techniques.		
CO3	Analyze the different software testing techniques.		
CO4	Determine the software reliability.		
CO5	Evaluate the software quality.		
CO6	Analyze and evaluate software project management activities.		
Learning	Resources:		
1	R.G. Pressman : Software Engineering, TMH		
2	Behforooz, Software Engineering Fundamentals, OUP		
3	C. Ghezzi, M. Jazayeri and D. Mandrioli : Fundamentals of Software Engineering, PH	1	

4	I. SomerVille : Software Engineering, Pearson Education
5	Royce : Software Project Management, Pearson Education
6	P. James, Pedrycz and Witold : Software Engineering- An Engineering Approach, John Wiley
7	Humphrey : Managing the Software Process, Pearson Education

Name	of the course	ADVANCED DATA STRUCTURES
Course	Code: ITPEC101C	Semester: 1st
Duratio	on: 6 months	Maximum Marks: 100
Teachi	ng Scheme	Examination Scheme
Theory	r: 3 hrs/week	Mid Term I Exam: 15 Marks
Credit Points: 3		Mid Term II Exam: 15 Marks
		Assignments, Class performance & Attendance, Quiz:
		20 Marks
		End Semester Exam: 50 Marks
Object	ive:	
1.	To learn implementations of adva	anced Data structures.
2.	To understand advanced data str	uctures to solve complex problems in various domains.

3. To operate on the various structured data.

4. To choose the appropriate data structures that effectively model the information in a problem.

Pre-Requisite:

1.	Data Structure & Algorithms (UG level)			
Module	Content	Hours	Marks	
1	Hashing: Introduction, Static Hashing – Hash table, Hash Function, overflow	7		
	Handling, Dynamic Hashing.			
2	Skip Lists: Search and Update Operations on Skip Lists, Probabilistic Analysis of	4		
	Skip Lists.			
3	Trees: Binary Search Trees, search efficiency, insertion and deletion operations,	9		
	importance of balancing, AVL Trees, searching, insertion and deletion in AVL			
	trees, Introduction to Red Black Trees, insertion and deletion in Red Black Trees,			
	B- Tree, insertion and deletion in B-tree, B+-Tree, insertion and deletion in B+-			
	Tree, Splay Trees, insertion and deletion in Splay tree.			
4	Heap: Binary Heaps, Binary Heaps operations, d-heap, Skew Heaps operations,	9		
	Binomial Heaps operations, Fibonacci Heaps operations.			
5	Multidimensional Searching: One Dimensional Range Searching, Two-			
	Dimensional Range Searching, Quad trees, k-D Trees operations.	7		
Course O	utcomes:			
After con	pletion of this course, the learners will be able to -			

CO1	Describe the hash function and concepts of collision and its resolution methods.
CO2	Implement algorithms for skip lists.
CO3	Apply tree data structure in various problems.
CO4	Analyze algorithms for various variations of Heaps.
CO5	Identify suitable data structures for Multidimensional Searching.
Learning	Resources:
1	Ellis Horowitz, Sartaj Sahni, Susan Anderson Freed, "Fundamentals of Data Structures in C", Second
	Edition, Universities Press, 2008.
2	Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, 4th Edition, Pearson, 2004
3	Data Structures and Algorithms, 3/e, Adam Drozdek, Cengage
4	Michael T Goodrich, Roberto Tamassia, Data Structures and Algorithms in C++, Second Edition John
	Wiley & Sons, Inc., 2011.
5	Yedidyah Langsam, Moshe J. Augenstein, Aaron M. Tenenbaum, "Data Structures using C and C++",
	Second Edition, PHI Learning Private Limited, 2010
6	Ellis Horowitz, Dinesh Mehta, Sartaj Sahni, Fundamentals of Data Structures in C++, University Press

Name of the course		INFORMATION THEORY AND CODING		
Course Code: ITPEC102A		Semester: 1 st		
Durati	on: 6 months	Maximum Marks: 100		
Teachi	ng Scheme	Examination Scheme		
Theory	r: 3 hrs/week	Mid Term Exam. 1: 15 Marks		
Credit	Points: 3	Mid Term Exam. 2: 15 Marks		
		Assignment, Test based on assignment,	Quiz,	
		Presentations, Attendance, Term paper	etc.: 20 M	arks
	End Semester Exam.: 50 Marks			
Object	ive:			
1.	1. To define, interpret and apply the basic concepts of information theory			
2.	To learn the principles of information theory in communication systems			
3.	To understand the theoretical framework up	oon which error-control codes are built		
4.	Make use of various error control encoding a	and decoding techniques		
5.	To analyze the performance of various error	control codes		
Pre-Re	quisite:			
1. Engineering Mathematics (UG level)				
Module Content Hours Mark			Marks	
1	1 Information Theory: Review of probability theory, Uncertainty and Information, 4			
	Self and Mutual Information, Entropy, Ma	thematical Properties of the Entropy		

	Function.				
2	Source Coding: Entropy and Coding, Shannon-Fano Coding, Variable-Length	6			
	Codes: Unique Decoding, Instantaneous Codes, Construction of Instantaneous				
	Codes, Prefix tree for prefix code, The Kraft Inequality, Huffman codes.				
3	Information Channel: Channel models, channel capacity, channel coding,	4			
	information capacity theorem, The Shannon limit.				
4	Error Control Coding: Introduction, Examples of Error control coding, Minimum	7			
	Distance of a Block code, Linear Block Codes: Matrix description of linear block				
	codes, Error-Detecting and Error-correcting Capabilities of a Linear Block code,				
	parity check matrix, Encoding and decoding of Linear Block-codes, Syndrome				
	Decoding, Hamming Codes.				
5	Cyclic Codes: Polynomial representation of codewords, Generator Polynomial,	10			
	Systematic Codes, Syndrome Calculation and Error Detection, Decoding of Cyclic				
	Codes, Generator and Parity-check Matrices, Golay Codes, Introduction to Galois				
	Field, BCH Codes: Properties of BCH codes, examples of BCH codes; Reed				
6	Solomon Code.				
0	Convolutional Codes: Introduction, Polynomial description of Convolutional	5			
	Decoding of Convolutional codes. Trollis codes				
Course O					
After con	npletion of this course, the learners will be able to-				
CO1	explain the basic notions of information and channel capacity.				
CO2	analyse the channel performance issues using Information theory.				
CO3	illustrate various properties of error control coding				
CO4	implement some linear block codes and cyclic codes for error detection and correct	ion			
CO5	justify BCH & RS codes for Channel performance improvement against burst errors.				
CO6	apply convolution codes for performance analysis.				
Learning	Learning Resources:				
1	Information theory, coding and cryptography - Ranjan Bose; TMH.				
2	Introduction to Error Control Codes – S Gravano; Oxford.				
3	Coding and Information Theory – R. W. Hamming; Prentice Hall.				
4	Information and Coding Theory - G. A. Jones and J. M. Jones ; Springer – Verlag.				
5	Essentials of Error-Control Coding – Jorge C. Moreira and Patrick G Farrell; Wiley.				
6	Error Control Coding - Shu Lin and D J Costello Jr.; Prentice Hall.				

Name of the course	PATTERN RECOGNITION
Course Code: ITPEC102B	Semester: 1st

Duration: 6 months		Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theory: 3 hrs/week Mid Term I Exam:		Mid Term I Exam: 15	5 Marks	
Credit Points: 3		Mid Term II Exam: 15	Marks	
Assignments, Class performance & qu		Assignments, Class performance & quiz et	etc.: 20 Marks	
		End Semester Exam:	50 Marks	
Objective	:			
1.	Learn the fundamentals of pattern recog	gnition and its relevance to classical and mo	odern pro	blems.
2.	Identify where, when and how pattern	recognition can be applied.		
Pre-Requ	isite:			
1.	Good foundation of Mathematics and st	atistics.		
2.	Good working knowledge of Matlab or F	Python.		
Module	Content		Hours	Marks
1	Introduction : Statistical pattern recog	gnition; Three learning paradigms; Basic	4	
	structure of pattern recognition system	s; Comparison between classifiers.		
2	Bayes Decision Theory : General fram	nework; Naïve Bayes; Optimal decisions;	4	
	Classification; Simple performance bour	ds.		
3	Learning - Parametric approaches : Bas	ic statistical issues; Sources of error; Bias	5	
	and variance; Different approaches to classification: density estimation,			
	regression and discriminant analysis;	Empirical error criteria; Optimization		
4	Supervised Learning: Linear and qua	dratic discriminants: Shrinkage: Logistic	5	
-	Regression: Generalized linear classifiers	: Perceptron (non parametric): Maximum		
	Margin; Error Correcting Codes.	,		
5	Unsupervised Learning : Different clus	tering algorithms - Partitive, hierarchical	6	
	and density based, Clustering for big	data, Anomaly Detection using Gaussian		
	Mixtures, Assessment Metrics for Cluste	ring Algorithms.		
6	Nonparametric Classification: Histogra	ams rules; Nearest neighbour methods;	4	
	Kernel approaches; Local polynomial fi	tting; Flexible metrics; Automatic kernels		
7	methods.	Ortinal factures Ortinal linear		
/	Feature Extraction & Selection	: Optimal features; Optimal linear	5	
	selection	principal components, reactive subset		
8	Neural Network : For supervised and unsupervised learning: Ensembles			
Course Outcomes:				
After completion of this course, the learners will be able to -				
CO1	Understand a variety of pattern recognit	tion systems and their combinations.		
CO2	Learn performance evaluation methods.			
CO3	Apply pattern recognition to real-world	challenging problems.		

CO4	
CO5	
Learning	Resources:
1	Devi V.S.; Murty, M.N. (2011) Pattern Recognition: An Introduction, Universities Press, Hyderabad.
2	R.O.Duda, P.E.Hart and D.G.Stork, Pattern Classification, John Wiley, 2001.
3	Statistical pattern Recognition; K. Fukunaga; Academic Press, 2000.
4	S.Theodoridis and K.Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009.

Name of the course	DIGITAL SIGNAL PROCESSING
Course Code: ITPEC102C	Semester: 1 st
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Term Examination 1: 15 Marks
Credit Points: 3	Mid Term Examination 2: 15 Marks
	Assignment, Test based on assignment, Surprise tests,
	Quizzes, Presentations, Attendance: 20 Marks
	End Semester Exam: 50 Marks

Objective:

1.	To analyze the properties of discrete time signals and systems.		
2.	To estimate spectra of discrete-time signals using the Discrete Fourier transform.		
3.	To design IIR and FIR digital filters.		
Pre-Requ	isite:		
1.	Engineering Mathematics		
Module	Content	Hours	Marks
1.	Discrete-time signals and systems:	10	
	Concept of discrete-time signal, different types of discrete time sequences:		
	periodic, energy, power, unit-sample, unit-step, unit-ramp, real & complex		
	exponentials.		
	LTI Systems: Definition, representation, impulse response, concept of		
	convolution, Structures for the implementation of LTI systems: Direct form I and II		
	structures, linear constant co-efficient difference equation, recursive and non-		
	recursive systems.		
2.	Z-Transform	6	
	Definition, mapping between s-plane and z-plane, unit circle, convergence and		
	ROC, properties of Z-transform, inverse Z-transform, multiplication using Z-		
	transform, initial value theorem, Perseval's relation.		

3.	Discrete Fourier Transform	6	
	Concept and relations for DFT/IDFT,		
	Fast Fourier Transform :Radix-2 algorithm, decimation-in-time, decimation-in-		
	frequency FFT algorithms, Radix-3 and Radix-4 FFTs.		
4.	Digital Filter	10	
	Basic concepts of IIR and FIR digital filters. design of Butterworth IIR filter using		
	impulse invariant and bilinear transformation method, Realization of IIR digital		
	filters, Direct form-I and Direct form-II realization.		
	Design of FIR filters: Linear-phase FIR filters, symmetric and antisymmetric		
	impulse responses, magnitude and phase characteristics of the frequency		
	response, design examples, Window techniques, concept of main and side lobes,		
	Rectangular, Hamming, Hanning, Blackman and Bartlett Window functions,		
	comparison of different types of windows.		
5.	Digital Signal Processor: Elementary idea about the architecture and important	4	
	instruction sets of TMS320C 5416/6713 processor, Assembly level Programming,		
	introduction to Code Composer Studio.		
Course O	utcomes:		
After con	npletion of this course, the learners will be able to -		
CO1	analyze the characteristics of linear time invariant systems.		
CO2	compute Z transform of discrete time sequences and compare with laplace transfo	orm.	
CO3	compute DFT of discrete time sequences using FFT algorithms.		
CO4	design different types of Digital Filters.		
CO5	Identify components of a DSP hardware system and program a DSP processor		
Learning	Resources:		
1	Digital Signal Processing – Principles, Algorithms and Applications, J.G.Proakis & D.G	i. Manolakis,	
	Pearson Ed.		
2	Discrete-Time Signal Processing, A. V. Oppenheim and R. W. Schafer, Pearson Educ	ation	
3	Digital Signal processing – A Computer Based Approach, S.K.Mitra, TMH Publishing	Co	
4	Digital Signal Processing, S.Salivahanan, A.Vallabraj & C. Gnanapriya, TMH Publishin	g Co.	
5	Digital Signal Processing, P. Rameshbabu, Scitech Publications (India)		
6	Texas Instruments DSP Processor user manuals and application		

Name of the course	CLOUD COMPUTING
Course Code: ITPEC102D	Semester: 1st
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Term Examination 1: 15 Marks

Credit Po	Credit Points: 3 Mid Term Examination 2: 15 Marks			
		Assignment, Test based on assignment, Surprise tests,		
	Quizzes, Presentations, Attendance: 20			
End Semester Exam: 50 Marks				
Objective	::			
1.	To understand the concept of cloud comp	outing.		
2.	To introduce the various levels of services	s that can be achieved by cloud.		
3.	To understand the concepts of the virtual	ization and virtual machine		
4.	To gain knowledge on the concept of Reso	ource Management and Load Balancing in	cloud co	nputing.
5.	To understand the security issues in cloud	l environment.		
6.	To appreciate the emergence of cloud as	the next generation computing paradigm.		
Pre-Requ	isite:			
1.	Operating System			
2.	Computer Networks			
Module	Content		Hours	Marks
1.	Introduction: Distributed Computing and	Enabling Technologies.	7	
	Cloud Fundamentals: Cloud Definition,	Evolution, Architecture, Applications,		
	Deployment models and Service models-	laaS, PaaS, SaaS.		
2.	Virtualization: Issues with virtualizat	ion, Virtualization technologies and	7	
	Architectures, Internals of virtual machine	e monitors/hypervisors, Virtualization of		
	data centers, and Issues with Multi-tenan	cy.		
3.	Cloud Platform Architecture & Program	ning Model: Cloud deployment models,	8	
	Categories of cloud computing, A generic	Cloud architecture design; introduction		
4	Resource Management and Load Balance	ing: Distributed Management of Virtual	6	
4.	Infrastructures Server consolidation	Resource Management Resource		
	Optimization. Capacity Management to	meet SLA Requirements, and Load		
	Balancing, various load balancing techniqu	ues.		
5.	Security: Vulnerability Issues and Security	rity Threats, Application-level Security,	8	-
	Data level Security, and Virtual Machine	e level Security, Infrastructure Security,		
	and Multi-tenancy Issues, IDS.			
Course O	utcomes:			
After completion of this course, the learners will be able to -				
CO1	Analyze the trade-offs between deploying	applications in the cloud and over the loo	cal infrast	ructure.
CO2	Apply the concept of virtualization in the	cloud computing.		
CO3	Apply the knowledge of resource manage	ment and load balancing.		
CO4	Identify the architecture, infrastructure of	f cloud computing.		
CO5	Apply the security models in the cloud en	vironment.		
Learning	Learning Resources:			

1	Cloud Computing: Principles and Paradigms, Editors: Rajkumar Buyya,
	James Broberg, Andrzej M. Goscinski, Wile, 2011
2	Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010
3	Cloud Computing: Principles, Systems and Applications, Editors: Nikos Antonopoulos, Lee Gillam,
	Springer, 2012
4	Rittinghouse, John W., and James F. Ransome, Cloud Computing: Implementation, Management and
	Security, CRC Press, 2017.
5	Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz, Russell Dean
	Vines, Wiley-India, 2010
6	Cloud Computing: A Practical Approach, Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, Tata
	McGraw Hill, rp2011.
7	Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, Tim Mather, Subra
	Kumaraswamy, Shahed Latif, O'Reilly, 2010

Name of	the course	INDIAN CONSTITUTION
Course Code: ITAUD101A		Semester: 1st
Duration:	6 months	Maximum Marks: 100
Teaching	Scheme	Examination Scheme
Theory: 2 hrs./week		Mid Term Examination 1: 15 Marks
Credit Points: 0		Mid Term Examination 2: 15 Marks
		Assignment, Test based on assignment, Surprise tests,
		Quizzes, Presentations, Attendance: 20 Marks
E		End Semester Exam: 50 Marks
Objective:		
1.	To understand the structure of the	ne Indian Constitution.
2.	To learn about the Nature-Specia	alty and Proposal Of Indian Constitution.

3.	To Describe the Centre- State relationship and the role of government administration.

4.	To gain knowledge about the Indian Jurisdiction and conceptualization of social reforms that lead to
	revolution in India.

 Pre-Requisite:

 1.
 Basic knowledge of Civics.

1.	Basic knowledge of Civics.		
Module	Content	Hours	Marks
1	History of Making of the Indian Constitution:	3	
	Sources and constitutional history, Drafting Committee, Features: Citizenship,		
	Preamble. The Nature-Specialty and Proposal Of Indian Constitution.		
2	Contours of Constitutional Rights & Duties:	4	
	Fundamental Rights, Right On: Equality, Freedom, Against Exploitation, Freedom		

	of Religion, Cultural and Educational Rights, Constitutional Remedies. Directive	
	Principles of State Policy. Fundamental Duties.	
3	Union government and its administration:	6
	Structure of the Indian Union: Federalism, Centre- State relationship, President:	
	Role, power and position, PM and Council of ministers, Cabinet and Central	
	Secretariat, Lok Sabha, Rajya Sabha. State government and its administration:	
	Governor: Role and Position, CM and Council of ministers, State Secretariat:	
	Organization, Structure and Functions.	
4	Local Administration:	3
	District's Administration : Role and Importance, Municipalities: Introduction,	
	Mayor and role of Elected Representative. Block level: Organizational Hierarchy	
	(Different departments). Panchayati raj: Introduction, Importance and role.	
5	Election Commission:	3
	Election Commission: Role and Functioning. Chief Election Commissioner and	
	Election Commissioners. State Election Commission: Role and Functioning.	
	Institute and Bodies for the welfare of SC/ST/OBC and women.	
6	Jurisdiction:	5
	Supreme court: Organization of supreme court, procedure, jurisdiction and	
	power of the supreme court. High court: Organization of high court, procedure,	
	jurisdiction and power of high court. Subordinate courts: constitutional	
	provision, structure and jurisdiction. National legal services authority, gram	
	nyayalays. Public interest litigation (PIL): meaning of PIL, features ,scope ,	
	principle , guidelines for admitting PIL.	
Course O	utcomes:	
	Explain about different features of Indian constitution	
	Explain about dimerent reactives of mulan constitution.	
02	Identify the power and functioning of Union, state and local self-government.	
03	Explain about jurisdiction and function of Indian Judiciary.	
CO4	Applying the authority to redress a problem in the profession and in the society.	
CO5	Using the basics of PIL and guideline for admission of PIL along with the functionir	ng of local
	administration starting from block to municipal Corporation.	
CO6	Demonstrate the intellectual origins of the framework of argument that informed	the
	conceptualization of social reforms leading to revolution in India.	
Learning	Resources:	
1	Indian polity, M, Laxmikanth, MC Graw Hill education, 5th Edition.	
2	Indian Constitution, M P Jain, 8 th Edition.	
3	Indian Constitution and Administration,Latika Shekhar.	
4	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.	
5	Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.	

Name of	ne of the course PC lab I			
Course Code: ITPCL101		Semester: 1 st		
Duration: 6 months		Maximum marks:100		
Teaching	Scheme	Examination scheme:		
Practical:	3 hrs./week	Attendance: 10 marks		
Credit Po	ints:1.5	Preparation of Lab Report: 20 marks		
		Experimental data/ Precision of work done/ Coding		
		efficiency: 30 marks		
		Presentation / analysis of the result: 20 marks		
		Viva voce: 20 marks		
	COMPUTER ARC	CHITECTURE LAB. (Part I)		
	COMPUTER N	ETWORK LAB. (Part II)		
Objective	:			
1.	To implement socket programming			
2.	To configure different server			
3.	To design address allocation			
Pre-Requ	Pre-Requisite:			
1.	Computer Network (ITPC103)			
Module	Content			
1.	TCP/UDP Socket Programming fundame	entals		
2.	UDP and TCP ECHO server and client/ U	DP and TCP Time Server and Client		
3.	Chat Server and Client programming			
4.	Stop and Wait ARQ in UDP with CRC			
5.	Server Setup and Configuration FTP, Tel	net, DNS.		
6.	Firewall configuration at client level			
7.	IP Address allocation problem			
Course O	utcomes:			
After com	pletion of this course the students will be	able to -		
CO1	Demonstrate UDP/ TCP socket programn	ning		
CO2	Implement client server model using soc	ket programming		
CO3	Implement different server configuration	n		
CO4	Configure firewall at client side			
CO5	Design solution for real life problems of I	P address allocation		
Learning	Learning Resources:			
1.	UNIX Network Programming: The sockets	s networking API, Volume 1 of UNIX Network Programming,		
	W. Richard Stevens , Pearson Education			

Name of t	he course	SOFTWARE ENGINEERING LAB		
Course Co	de: ITPEC101(B)L	Semester: 1st		
Duration:	6 months	Maximum marks:100		
Teaching S	Scheme	Examination scheme:		
Practical: 3	3 hrs./week	Attendance: 10 marks		
Credit Poi	nts:1.5	Preparation of Lab Report: 30 marks		
		Experimental data/ Precision of work done: 30 marks		
		Presentation / analysis of the result: 30 marks		
		Viva voce: 20 marks		
Module	Content			
1.	Customer requirements analysis, feasibil	ity analysis and cost benefit analysis.		
2.	Software design using different types of	design tools.		
3.	Develop the software using a standard programming language.			
4.	Test the developed software using manual and automated testing tools.			
5.	Analyze the software using different software project management tools- WBS, Gantt chart, PERT, CPM			
Course Ou	itcome:			
After com	pletion of the course students will able to-			
CO1	Review and analyze different steps before	re develop a software.		
CO2	Select and apply different design tools a	nd techniques.		
CO3	Develop a software using a standard lan	guage.		
CO4	Analyze the different software testing te	chniques.		
CO5	Evaluate the software using different project management tools.			
Learning R	Learning Resources:			
1	Software Engineering- A R Puntambekar	- Technical Publications		
2	Software Design Methodology- Hong Zhu- Elsevier			
3	Software Project Management- Walker R	Royce- Pearson		
4	Software Testing A Practical Approach-S	andeep Desai, Abhishek Srivastava- PHI		

Name of the course	ADVANCED DATA STRUCTURES LAB
Course Code: ITPECL101	Semester: 1st
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Practical: 3 hrs/week	Attendance: 10 marks

Credit Po	ints: 1.5	Preparation of Lab Report: 30 marks		
		Experimental data/ Precision of work done: 30 marks		
		Presentation / analysis of the result: 30 marks		
Objective	2:			
1.	To understand the usage of hashing.			
2.	To learn skip list.			
3.	To acquire the knowledge of using advan	ced tree structures.		
4.	To learn the usage of different heap strue	ctures.		
Pre-Requ	iisite:			
1.	Data Structure & Algorithms Lab.			
Module	Content			
	List of Experiments			
1	Implement static hashing using linear pro	bing as overflow technique.		
2	Implement static hashing using chaining a	as overflow technique.		
3	Implement Directory based dynamic hash	ning technique.		
4	Implement Directory less dynamic hashin	ig technique.		
5	Implement skip lists.			
6	Implement B tree.			
7	Implement Red Black tree.			
8	Implement Splay tree.			
9	Implement Digital search tree.			
10	Implement Binary heap structure.			
11	Implement Fibonacci Heap.			
12	Implement k-D tree.			
Course O	utcome:			
After con	er completion of the course students will able to-			

SECOND SEMESTER

	2 nd SEMESTER						
SL. NO.	PAPER CODE	PAPER NAME	L	т	Р	CONTACT HRs./WEEK	CREDIT
THEC	DRY						
01	ITPC204	Advanced Operating System	3	1	0	4	4
02	ITPC205	Database Design	3	1	0	4	4
03	ITPC206	Advanced Algorithm	3	1	0	4	4
04	ITPEC203	A: Image and video Processing	3	0	0	3	3
		C: Soft Computing					
05	ITPEC204	A: Mobile Computing	3	0	0	3	3
		B: IoT and Its Application					
		C: Data Mining					
06	ITRES201	Research Methodology and IPR	2	0	0	2	2
SESSI	ONAL/PRACTICAL						
01	ITPCL202	PC Lab. II	0	0	3	3	1.5
02	ITPEC203(A/B/C)L	ITPEC203 Lab.	0	0	3	3	1.5
03	ITPRJ201	Dissertation (Part 1)	0	0	4	4	2
TOTA	TOTAL		17	3	10	30	25

Name of	the course	ADVANCED OPERATING SYSTEM	
Course Co	ode: ITPC204	Semester: 2 nd	
Duration: 6 months		Maximum Marks: 100	
Teaching	Scheme	Examination Scheme	
Theory: 3	3 hrs./week	Mid Term I Exam:	15 Marks
Tutorial:	1hr./week	Mid Term II Exam:	15 Marks
Credit Po	ints: 4	Class performance & Attendance:	20 Marks
		End Semester Exam & Viva:	50 Marks
Objective	2:		
1.	To review and analyze process and mer	nory management.	
2.	To identify different aspects of multipro	ocessor system.	
3.	To understand distributed operating sy	stem.	
4.	To understand and analyze real time operating system.		
Pre-Requ	isite:		
	Operating Systems (UG level)		

Module	Content	Hours	Marks		
1	Process Management	6			
	Concepts of processes, resource utilization, CPU scheduling algorithms, IPC, RPC,				
	thread, multithreading models, deadlock.				
2	Process Synchronization	8			
	Concurrent processes, race condition, semaphore, monitor, Overview of different				
	classical synchronization problems, Creating, deleting, prioritizing mutex.				
3	Memory Management	4			
	Process stack management, dynamic loading & linking, swapping, overlays, Page				
	replacement-second chance algorithm.				
4	Multiprocessor System	4			
	Motivation, Classification, Multiprocessor Interconnections, Types,				
	Multiprocessor OS functions & requirements; Design & Implementation Issue;				
	Introduction to parallel programming; Multiprocessor Synchronization.				
5	Distributed operating system	10			
	Concepts, Architectures, Issues in Distributed operating systems, Limitations of				
	Distributed Systems,				
	Clocks, Lamport's logical clock, Global states.				
	Distributed Mutual Exclusion, Lamport's Algorithm, Ricart-Agrawala Algorithm,				
	Basic concepts of deadlock in Distributed system, Distributed File system.				
	Distributed shared memory.				
	Basic concepts of Distributed Scheduling, Load balancing, Load Sharing.				
6	Naming, Process migration, Remote Procedure Cans.	4			
0	Terminology: RTOS concepts and definitions, real-time design issues. Hardware	4			
	Considerations: logic states CDU memory 1/0 Architectures: PTOS building				
	hlocks: Real-Time Kernel				
Course O					
After com	indetion of the course students will able to -				
CO1	Review and analyze process management.				
(02	Select and apply different process synchronization techniques				
<u> </u>	Beview and determine memory management				
CO4	Determine multiprocessor system				
	Evaluate distributed operating system.				
	Evaluate distributed operating system.				
	Analyze real time operating system.				
Learning	Resources:				
1	Operating System concepts- Avi Silberschatz, Greg Gagne, and Peter Baer Galvin- W	/iley India	1		
2	Operating Systems: Internals and Design Principles-William Stallings-Pearson				
3	Operating Systems Concepts & design - Milan Milenkovic, TMH				
4	Distributed Operating Systems: Concepts and Design- P K Sinha- PHI				

5	Advanced Concepts in operating Systems - Mukesh Singhal and Niranjan G. Shivaratri, TMH
6	Distributed Operating system- A S Tanenbaum- Pearson
7	Real-Time and Embedded Guide by Herman B.

Name of	the course	DATABASE DESIGN			
Course Code: ITPC205		Semester: 2 nd			
Duration: 6 months		Maximum Marks: 100			
Teaching	Scheme	Examination Scheme			
Theory: 3	3 hrs./week	Mid Term I Exam: 15 M	Лarks		
Tutorial:	1hr./week	Mid Term II Exam: 15 M	Лarks		
Credit Po	ints: 4	Attendance, Assignments, Quiz & Presentations: 20 Marks			
		End Semester Exam: 75 Marks (to be mapped into 50 marks)			
Objective	::				
1.	To Understand the basic concepts of queries using SQL.	database systems, relational database de	sign princ	iples and	
2.	To be able to understand normalization forms.	and improve the database design by apply	ying variou	us normal	
3.	To be familiar with the basic issues of q	uery processing and optimization.			
4.	To get in depth knowledge of transaction	on management and concurrency control m	nechanism	IS.	
5.	To understand some advanced database concepts and some emerging database systems.				
Pre-Requ	isite:				
1.	Data Structure (UG level)				
Module	Content		Hours	Marks	
1	Introduction to Databases		7		
	Overview, ER Diagram, Relational I	Data Model, Relational Algebra: Basic			
	operators, Composition of operators, D	atabase modification.			
	Joins, Views, Triggers, PL/SOL structure				
2	Normalization	-	4		
	Motivation, Functional Dependencies,				
	Decomposition and different Normal Fo	orms, Multivalued and Join Dependencies,			
	Denormalization.				
3	Query Processing and Optimization		6		
	Basic concepts of query processing, O	verview of Indexing, Translation of SQL			
	queries into Relational Algebra, Basic a	igorithms for executing query operations;			
	Database Tuning: Normalization tuning	and Ouery tuning			
4	Transaction Management		8		
	Transaction processing concepts: ACID	properties, Schedules and serializability;	_		

	Concurrency control, Two Phase Locking Techniques, Optimistic Concurrency				
	Control; Database recovery concepts and techniques.				
5	Distributed Database	6			
	Distributed databases principles, architectures and design, Fragmentation,				
	Transparencies in Distributed Databases; Overview of Transaction Management;				
	Query Processing and Concurrency control in Distributed Database.				
6	Databases on the Web and Emerging Database	5			
	Overview, Structure of XML data, Document schema, Querying and Storage of				
	XML data, XML applications. MongoDB.				
	Big data concept and Introduction to NOSQL systems: Categories of NOSQL				
	Systems, CAP Theorem.				
Course O	utcomes:				
After com	npletion of the course students will able to -				
CO1	Explain various database components, models, Relational algebra and construct SC	QL queries			
CO2	Apply the concept of normalization and functional dependency for database desig	n.			
CO3	Demonstrate key notions of query evaluation and optimization techniques.				
CO4	Assess transaction processing, concurrency control and recovery in databases.				
CO5	Analyze the implementation of distributed database system.				
CO6	Examine the issues related to Web and Big data related databases.				
Learning	Resources:				
1	Elmsari and Navathe, "Fundamentals of Database Systems", Pearson Education, 7t	th Edition			
2	Korth, Silberschatz, "Fundamentals of Database System Concepts", TMH, 6th Editi	on			
3	Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems (3/e)	, McGraw	Hill		
4	C. J. Date, A. Kannan, S. Swamynathan, "An Introduction to Database Systems", Pe	arson Edu	cation,		
	8th Edition				
5	M Tamer Özsu and Patrick Valduriez, "Principles of distributed database syste	ms", Sprii	nger, 4th		
	Edition				
6	Dennis Shasha and Philippe Bonnet, "Database Tuning: Principles, Experiments, ar	nd Trouble	shooting		
	Techniques", Morgan Kaufmann, 1st Edition				

Name of the course:	ADVANCED ALGORITHMS
Course Code: ITPC206	Semester: 2 nd
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory Contact Hrs.: 3 hrs./week	Mid Semester-1 Exam: 15 Marks
Tutorial Contact Hrs.: 1	Mid Semester-2 Exam: 15 Marks
Credit Point: 4	Assignment, Quiz & class attendance: 20 Marks
	End Semester Exam: 75 Marks (to be mapped into 50
	marks)

Objective	::					
1.	Introduce students to correctness proof of algorithms					
2.	The student should be able to select appropriate algorithm for a specific problem					
3.	To learn new techniques for solving specific problems more efficiently					
4.	To learn various algorithmic techniques for efficient processing of string data					
5.	To introduce the power of randomization in the design and analysis of algorithms					
6.	To introduce students to various problems in Computational Geometry					
Pre-Requ	isite:					
1.	Design and Analysis of Algorithm					
Module	Content	Hours	Marks			
1.	Sorting and Graphs	04				
	Insertion Sort Analysis with emphasis on correctness proof of the algorithm,					
	Union-Find Algorithm, Example of amortized analysis					
2.	String Algorithms	06				
	Rabin-Karp Algorithm, KMP, Suffix Trees					
3.	Maximum Flows	06				
	Augmenting Paths, Minimum Cost Flows, Bipartite Matching					
4.	Randomized Algorithms	06				
	A Min-Cut Algorithm, Las Vegas and Monte Carlo, Binary Planar Partitions, A					
	Probabilistic Recurrence, Computation Model and Complexity Classes					
5.	Approximation Algorithms	10				
	P and NP, One Way of Coping with NP-Hardness, Greedy Approximation					
	Algorithms, Dynamic Programming and Weakly Polynomial-Time Algorithms,					
	Randomized Rounding, Vertex Cover, Wiring, and TSP					
6.	Computational Geometry	04				
	Convex Hull, Line-segment Intersection, Sweep Lines					
Course O	utcomes:					
After com	ppletion of this course the students will be able to -					
CO1	Prove correctness of different algorithms					
CO2	Solve various problems using String-Matching Algorithms					
CO3	Use advanced graph algorithms to solve various problems					
CO4	Apply randomized algorithms to solve different problems					
CO5	Design approximation algorithms to solve different NP complete problems					
CO6	Implement computational geometry algorithms					
Learning	Resources:					
1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms,					
	Third Edition, The MIT Press, ISBN: 9780262033848					
2.	Jon Kleinberg, Eva Tardos, Algorithm Design, Pearson, ISBN: 9789332518643					
3.	S. Sridhar, Design and Analysis of Algorithms, Oxford, ISBN: 9780198093695					

4.	Vijay V. Vazirani, Approximation Algorithms, Springer, ISBN: 9788181283856
5.	Rajeev Motwani, Prabhakar Raghavan, Randomized ·algorithms, Cambridge University Press,
	ISBN 0-521-47465-5

Name of the course IMAG		IMAGE AND VIDEO PROCESSING		
Course Code: ITPEC203A		Semester: 2 nd		
Duration: 6 months		Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3	hrs./week	Mid Term I: 15 Marks		
Credit Po	ints: 3	Mid Term II: 15 Marks		
		Assignment, Test based on assignments	, Surprise	tests,
		Quiz, Presentations, Attendance etc. :	20 Mark	s
		End Semester Exam: 50 Marks		
Objective	:			
1.	To understand the concept of digital image	es and related definitions.		
2.	To learn different image processing algori	thms.		
3.	To study color and video image processing	g techniques.		
Pre-Requ	isite:			
1.	Advanced Engineering Mathematics [ITPC101]			
2.	Digital Signal Processing [ITPEC102C]			
Module	Content		Hours	Marks
1	Image Representation Introduction, Gray scale and Color Images, Sampling and 5			
	Quantization, Discrete Fourier transform, Walsh transform, Hadamard			
	transform, Haar transform, Discrete Cosine Transform, Karheunen-Loeve			
	transform, Hough transform.			
2	Image Enhancement in the Spatial Domain Some Basic Gray Level 6			
	Transformations, Histogram Processing, Basics of Spatial Filtering, Smoothing		0	
	Transformations, Histogram Processing,	Basics of Spatial Filtering, Smoothing	0	
	Transformations, Histogram Processing, Spatial Filters, Sharpening Spatial Filter Methods	Basics of Spatial Filtering, Smoothing ers, Combining Spatial Enhancement	0	
3	Transformations, Histogram Processing, Spatial Filters, Sharpening Spatial Filte Methods.	Basics of Spatial Filtering, Smoothing ers, Combining Spatial Enhancement	5	
3	Transformations, Histogram Processing, Spatial Filters, Sharpening Spatial Filter Methods. Image Enhancement in the Frequency D Frequency-Domain Filters, Sharpening Fr	Basics of Spatial Filtering, Smoothing ers, Combining Spatial Enhancement Domain Fourier Transform, Smoothing equency Domain Filters, Homomorphic	5	
3	Transformations, Histogram Processing, Spatial Filters, Sharpening Spatial Filter Methods. Image Enhancement in the Frequency D Frequency-Domain Filters, Sharpening Fr Filtering.	Basics of Spatial Filtering, Smoothing ers, Combining Spatial Enhancement Domain Fourier Transform, Smoothing equency Domain Filters, Homomorphic	5	
3	Transformations, Histogram Processing, Spatial Filters, Sharpening Spatial Filter Methods. Image Enhancement in the Frequency D Frequency-Domain Filters, Sharpening Fr Filtering. Image Restoration Models of Image De	Basics of Spatial Filtering, Smoothing ers, Combining Spatial Enhancement Domain Fourier Transform, Smoothing equency Domain Filters, Homomorphic gradation/Restoration Process, Noise	5	
3	Transformations, Histogram Processing, Spatial Filters, Sharpening Spatial Filter Methods. Image Enhancement in the Frequency D Frequency-Domain Filters, Sharpening Fr Filtering. Image Restoration Models of Image De Models, Linear, Position- Invariant Degr	Basics of Spatial Filtering, Smoothing ers, Combining Spatial Enhancement Domain Fourier Transform, Smoothing equency Domain Filters, Homomorphic gradation/Restoration Process, Noise adations, Estimating the Degradation	5	
3	Transformations, Histogram Processing, Spatial Filters, Sharpening Spatial Filter Methods. Image Enhancement in the Frequency D Frequency-Domain Filters, Sharpening Fr Filtering. Image Restoration Models of Image De Models, Linear, Position- Invariant Degr Function, Inverse Filtering, Minimum M	Basics of Spatial Filtering, Smoothing ers, Combining Spatial Enhancement Domain Fourier Transform, Smoothing equency Domain Filters, Homomorphic gradation/Restoration Process, Noise adations, Estimating the Degradation lean Square Error (Wiener) Filtering,	5	
3	Transformations, Histogram Processing, Spatial Filters, Sharpening Spatial Filter Methods. Image Enhancement in the Frequency D Frequency-Domain Filters, Sharpening Fr Filtering. Image Restoration Models of Image De Models, Linear, Position- Invariant Degr Function, Inverse Filtering, Minimum M Constrained Least Squares Filtering, Geom	Basics of Spatial Filtering, Smoothing ers, Combining Spatial Enhancement Domain Fourier Transform, Smoothing equency Domain Filters, Homomorphic gradation/Restoration Process, Noise adations, Estimating the Degradation lean Square Error (Wiener) Filtering, netric Mean Filter.	5	

	Detection, Thresholding, Region-Based Segmentation, Segmentation by			
	Morphological Watersheds.			
6	Image Data Compression Introduction, Pixel coding, Predictive techniques, 4			
	Transform coding, Inter-frame coding, coding of two tone images, Image			
	Compression standards.			
7	Video Processing Fundamental Concepts in Video - Types of video signals, 10			
	Analog video, Digital video, Color models in video, Video Compression			
	Techniques - Motion compensation, Search for motion vectors, H.261, H.263,			
	MPEG T, MPEG 2, MPEG 4, MPEG 7 and beyond, Content based video indexing.			
Course O	utcomes:		•	
After suc	After successful completion of this course, the learners will be able to -			
CO1	Understand the fundamental concept of digital images. and their.			
CO2	Describe different image enhancement techniques in spatial and frequency domai	ns.		
CO3	Implement image segmentation algorithms.			
CO4	Compare different lossless and lossy image compression techniques.			
CO5	Apply different color models in image processing algorithms.			
Learning	Resources:			
1	R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson.			
2	M. Tekalp, Digital Video Processing, Prentice Hall.			
3	A.Bovik, Handbook of Image & Video Processing, Academic Press.			
4	Jahne, Digital Image Processing, Springer, India.			
5	Solomon and Breckon, Fundamentals of Digital Image Processing: A Practical Appro	oach with		
	Examples in Matlab, Solomon and Breckon, Wiley			

Name of the course		MACHINE LEARNING	
Course Code: ITPEC203B		Semester: 2 nd	
Duration: 6 months		Maximum Marks: 100	
Teaching Scheme		Examination Scheme	
Theory: 3 hrs./week		Mid Term I: 15 Marks	
Credit Po	ints: 3	Mid Term II: 15 Marks	
		Assignment, Test based on assignments, Surprise tests,	
		Quiz-, Presentations, Attendance etc.: 20 Marks	
		End Semester Exam: 50 Marks	
Objective:			
1.	To understand and implement supervised, unsupervised and reinforcement learning algorithms		
2.	To analyze shallow and deep neural network models.		

3.	. To apply standard machine learning frameworks for implementing real world problems.			
Pre-Requisite:				
1.	Knowledge of Linear Algebra, Probability and Statistics			
2.	Programming knowledge in Python			
Module	Content Hours Marks			
1	Introduction: Types of learning. Preparation of Data for Machine Learning	3		
	Algorithms - Data Cleaning, Handling Text and Categorical Attributes, Handling			
	Missing Values, Exploration of Data using Visualization, Regression - Linear			
	regression, Multivariate regression, Multi-collinearity, Logistic Regression.			
2.	Supervised Learning : Classifiers - Classification using Regression, Multiclass	5		
	Classifier, Multi-label Classification. Gradient Descent Algorithm for Linear			
	Regression Model, Naive Bayes Classifiers, Decision Trees, Ensembles of			
	and Improvement.			
3	Dimensionality Reduction : Dimensionality Reduction, Feature Extraction,	4		
	Feature Selection, and Manifold Learning, Principal Component Analysis (PCA),			
	Randomized PCA, Incremental PCA, Kernel PCA, Selecting a Kernel and Tuning			
	Hyper-parameters.			
4	Unsupervised Learning: Partitive, Hierarchical and Density based clustering,	5		
	Comparative analysis, Clustering for big data, Anomaly Detection using			
	Gaussian Mixtures, Cluster validity indices.			
5	Reinforcement Learning : Model free and model based reinforcement	4		
	algorithms – Q learning, State-Action-Reward-State-Action (SARSA) etc.			
6	Neural Networks : Perceptrons, Multilayer Perceptrons, —Backpropagation	7		
	Bayesian Estimation. Training & Validation, Parameter Estimation - MLE, MAP,			
7	Deep Neural Networks : Difference from shallow networks, Convolutional Neural	8		
	Network and Recurrent Neural Network. Construction of Neural Network models			
	using Machine learning frameworks - Tensorflow and Keras, SciKit - Learn,			
	PyTorch			
Course O	utcomes:			
After suc	cessful completion of this course, the learners will be able to -			
CO1	Define the fundamental issues of machine learning : data, model selection, model of		y etc.	
02	Analyze the underlying mathematical relationships within and across different i	machine	learning	
03	argoniums.	comont la	arning	
<u> </u>	Compare different network models like Convolutional Recurrent etc		arring.	
	Apply standard machine loarning framoworks for implementing real world machine	loarning		
	algorithms			

1	Tom Mitchell, Machine Learning , McGraw Hill Education.
2	M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundation of Machine Learning, MIT Press.
3	Christopher Bishop. Pattern Recognition and Machine Learning. 2e, Springer.
4	S. S. Shwartz and S. B. David, Understanding Machine Learning : From Theory to Algorithms,
	Cambridge University Press, 2014.
5	I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press.
6	V.S. Devi; M.N. Murty, Pattern Recognition: An Introduction, Universities Press, Hyderabad, 2011.
7	R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, Wiley, 2000

Name of the course:		MOBILE COMPUTING		
Course Code: ITPEC204A		Semester: 2 nd		
Duration: 6 months		Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory Contact Hrs.: 3 hrs/week		Mid Semester-1 Exam: 15 Marks		
Credit Point: 3		Mid Semester-2 Exam: 15 Marks		
		Assignment, Quiz, Presentation, term pap	per & class	S
		attendance: 20 Marks		
		End Semester Exam: 75 Marks (to be ma	apped into	o 50
		marks)		
Objective	:			
1.	To study the concept of mobile computing and evolution of mobile network			
2.	To study cellular concepts and improvements cell capacity			
3.	To study wireless network and different protocol in physical and data link layer			
4.	To study mobile IP and mobile TCP			
5.	To study mobile routing, power management and mobile security			
Pre-Requisite:				
1.	Computer Network (ITPC103)			
Module	Content		Hours	Marks
1.	Introduction: A General Overview:	History of wireless communication,	3	
	Multiplexing, Multiple access basics, different generations of Cellular Telephony.			
	AMPS, GSM, GPRS, IMT-2000, UMTS, CDMA2000			
2.	Wireless and Cellular Networks: Infrastr	ucture and ad-hoc network, IEEE 802.11:	8	
	System Architecture, Protocol Architectu	ire, Physical Layer, 802.11a and 802.11b.		
	Media Access Techniques –CSMA/CA	A. Bluetooth: System and Protocol		
	Architecture, Wi-Fi. Cellular Concept,	Frequency Reuse, Channel Allocation		
	Management, Call Setup, Location Management, Call Setup, Location Management	gement, Cell Handoffs, Interference.		

3.	Mobile Network Layer: Mobile IP, IP Packet Delivery, Agent Discovery,	5		
	Registration, Tunneling and different types of Encapsulation, Optimizations and			
	Reverse Tunneling.			
4.	Mobile ad hoc network: Different models of operation. Various applications of	7		
	MANET. DSDV: overview, route advertisement, extending base station coverage.			
	Properties of DSDV protocol. Dynamic Source Routing protocol: overview and			
	properties, DSR route discovery, route maintenance. Support for heterogeneous			
	networks and mobile IP. Multicast routing with DSR. Ad Hoc On-Demand			
	Distance-Vector protocol - unicast route establishment, multicast route			
	establishment. Broadcast. Optimizations and Enhancements. Link Reversal			
	Routing, lightweight mobile routing. Temporally ordered routing algorithm.			
	Preserving battery life of mobile nodes - effects of beaconing on battery life.			
	Recent trends in MANET.			
5.	Mobile Transport Layer: Introduction, Traditional TCP: Congestion Control, Slow	4		
	Start, Fast Retransmit/ fast recovery and its implications of Mobility. Classical TCP			
6	Improvements: Indirect TCP, Snooping TCP	4		
6.	woble Security: Inreats, vulnerabilities, Attacks, Integrity, Confidentiality, Policy	4		
7	And relevant demittions	F		
/.	Limited Momony Momony Management in Mobile Java Momony Management in	5		
	example OS power management, green computing			
Course O	utcomes.			
After completion of this course the students will be able to -				
CO1	Explain architecture and protocol stacks for different types of wireless network.			
CO2	Implement Mobile IP, encapsulations and optimization techniques.			
CO3	Assess different routing models for ad hoc network and power saving models.			
CO4	Evaluate congestion and different Mobile TCP techniques.			
CO5	Assess vulnerabilities and devise different mobile security.			
CO6	Design solution for some real life issues like routing, power management and memory management.			
Learning Resources:				
1.	J. Schiller, Mobile Communications, Addison –Wesley			
2.	T. S. Rapport, Wireless Communications, Principle and Practices			
3.	Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, Principles of I	Mobile		
	Computing, Springer.			
4.	Asoke K Talukder, Hasan Ahmed and Roopa R Yavagal, "Mobile Computing: Techno	logy, Appl	ications	
	and Service Creation", TMH.			

Name of the course	IOT AND ITS APPLICATION

Course Code: ITPEC204B		Semester: 2 nd		
Duration: 6 months		Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theory: 3 hrs./week		Mid Term I Exam: 15	Marks	
Credit Points: 3 Mid Term II Exam: 15 Marks				
		Attendance, Assignment, Presentation &	Quiz: 2	0 Marks
		End Semester Exam: 50) Marks	
Objective:				
1.	To learn fundamentals, genesis, Internet principles and architectures of IoT			
2.	To Illustrate diverse methods of deployin	g smart objects and connect them to netw	vorks.	
3.	To understand prototyping embedded de	evices for sensing real world entities		
4.	To gain an understanding of the role of A	pplication protocols and Security in IoT		
Pre-Requ	isite:			
1.	Computer Network (ITPC103)			
Module	Content		Hours	Marks
1	The Internet of Things		8	
	An Overview, Genesis of IoT, Impact, cha	allenges, The Technology of the Internet		
	of Things, Internet Principles: Traditional Internet Review, HTTP, HTTPS, AMQP,			
	SIP; Overview of the Architecture of an IP-based Internet of Things: Physical/Link			
	Layer, Low-power Wi-Fi, Bluetooth, Powerline Communications, Network and			
	higher Layers			
2	IoT Network Architecture and Design10			
	Drivers Behind New Network Architectures, IoT Architectures: The IoT World			
	Forum (IoTWF) Standardized Architecture, IT and OT Responsibilities in the IoT			
	Reference Model, A Simplified IoT Architecture, The Core IoT Functional Stack,			
	IoI Data Management and Compute Stack: Fog Computing, Edge Computing, The			
3	Prototyping Embedded Devices 6			
	Sensors, Actuators, Micro-Electro-Mec	hanical Systems (MEMS) and Smart		
	Objects, Wireless Sensor Network and i	ts communication protocol, Machine to		
	Machine Communication, Introduction to	o Arduino and Raspberry Pi.		
4	Interoperability		5	
	Interoperability in Internet of Things, Clo	oud-based Solutions, REST and The Web		
	of Things, IoT Access Technologies:	IEEE 802.15.4; Optimizing IP for IoT:		
	6LoWPAN.			
5	Application Protocols and Security in the		7	
	101 network management sublayer: Co	DAP, MQII; Security Issues in the IoT,		
	Security integraphy Authorization Machanics	onal vs Lightweight security, Lightweight		
	Cryptography, Authorization Mechanism	s for secure for services. Case Study.		

Course O	utcomes:	
After completion of the course students will able to -		
CO1	Interpret the impact and challenges posed by IoT and the Internet technologies behind it.	
CO2	Explain the new architectural models of IoT and the different communication protocols for	
	connecting IoT nodes.	
CO3	Compare and contrast the deployment of smart objects and the technologies to connect them to	
	networks.	
CO4	Develop interoperability among some of the IoT technologies.	
CO5	Implement different Application protocols and security measures for IoT.	
Learning Resources:		
1	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry,"IoT	
	Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things",	
	Pearson Education	
2	Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", Wiely,	
3	Simone Cirani, Gianluigi Ferrari, Marco Picone, Luca Veltri, "Internet of Things: Architectures,	
	Protocols and Standards", John Wiley & Sons.	
4	Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill	
	Education.	

Name of the course:		RESEARCH METHODOLOGY AND IPR	
Course Code: ITRES 201		Semester: 2 nd	
Duration: 6 months		Maximum Marks: 100	
Teaching Scheme		Examination Scheme	
Theory Contact Hrs.: 2 hrs./week		Mid Semester-1 Exam: 15 Marks	
Credit Poi	nt: 2	Mid Semester-2 Exam: 15 Marks	
		Assignment, Quiz, Presentation, term paper & class	
		attendance: 20 Marks	
		End Semester Exam: 75 Marks (to be mapped into 50	
		marks)	
Objective:			
1.	To study research formulation		
2.	To study technical report writing		
3.	To study research proposal generation		
4.	To study IPR and GI		
5.	To study patent related case studies		
Pre-Requi	Pre-Requisite:		
1.			

Module	Content	Hours	Marks
1.	Introduction: Meaning of research problem, Sources of research problem,	4	15
	Criteria Characteristics of a good research problem, Errors in selecting a		
	research problem, Scope and objectives of research problem. Approaches of		
	investigation of solutions for research problem, data collection, analysis,		
	interpretation, Necessary instrumentations		
2.	Research Problem: Meaning of research problem, Sources of research problem,	6	20
	Criteria Characteristics of a good research problem, Errors in selecting a		
	research problem, Scope and objectives of research problem. Approaches of		
	investigation of solutions for research problem, data collection, analysis,		
	interpretation, Necessary instrumentations		
3.	Technical writing: Effective technical writing, how to write report, Paper	5	15
	Developing a Research Proposal, Format of research proposal, a presentation		
	and assessment by a review committee		
4.	IPR: Nature of Intellectual Property: Patents, Designs, Trade and Copyright.	5	20
	Process of Patenting and Development: technological research, innovation,		
	patenting, development. International Scenario: International cooperation on		
	Intellectual Property. Procedure for grants of patents, Patenting under PCT.		
5.	Patent and GI: Patent Rights: Scope of Patent Rights. Licensing and transfer of	6	15
	technology. Patent information and databases. Geographical Indications		
6.	Case study: New Developments in IPR: Administration of Patent System. New	4	15
	developments in IPR; IPR of Biological Systems, Computer Software etc.		
	Traditional knowledge Case Studies, IPR and IITs.		
Course Ou	itcome:		
After com	pletion of this course the students will be able to -		
CO1	Understand research problem formulation		
CO2	Analyze research related information		
CO3	Follow research ethics		
CO4	Understand that today's world is controlled by Computer, Information Technology	r, but tom	orrow
	world will be ruled by ideas, concept, and creativity.		
CO5	Understanding that when IPR would take such important place in growth of individ	duals & na	ation, it
	is needless to emphasis the need of information about Intellectual Property Right	to be pro	moted
	among students in general & engineering in particular.		
CO6	Understand that IPR protection provides an incentive to inventors for further rese	arch work	and
	investment in R & D, which leads to creation of new and better products, and in tu	ırn brings	about,
	economic growth and social benefits.		
Learning I	Resources:	_	_
1.	Research methodology: an introduction for science & engineering students, Stuart	: Melville	and
	Wayne Goddard, Juta and Company Ltd, 2004		
2.	Research Methodology: An Introduction, Wayne Goddard and Stuart Melville, Juta	and Com	ipany

3.	Research Methodology: A Step by Step Guide for beginners, Ranjit Kumar, 2nd Edition, SAGE
	publications, 2014
4.	Resisting Intellectual Property, Halbert, Taylor & Francis Ltd, 2007
5.	Resisting Intellectual Property, Halbert, Taylor & Francis Ltd, 2007
6	Industrial Design, Mayall, McGraw Hill, 1992.
7	Product Design, Niebel, McGraw Hill, 1974
8.	Intellectual Property in New Technological Age, Robert P. Merges, Peter S. Menell, Mark A. Lemley,
	2016
9.	Intellectual Property Rights Under WTO, T. Ramappa, S. Chand, 2008
10.	Introduction to Design, Asimov, Prentice Hall, 1962

Name of the course		PC lab II		
Course Code: ITPCL202		Semester: 2 nd		
Duration	6 months	Maximum marks:100		
Teaching	Scheme	Examination scheme:		
Practical:	3 hrs./week	Attendance: 10 marks		
Credit Po	ints:1.5	Preparation of Lab Report: 20 marks		
		Experimental data/ Precision of work done/ Coding		
		efficiency: 30 marks		
		Presentation / analysis of the result: 20 marks		
		Viva voce: 20 marks		
Operating System Lab. (Part I)				
Module	Content			
1.	Implementation of different CPU scheduling algorithms.			
2.	Implementation of different classical process synchronization problems.			
3.	Implementation of deadlock avoidance and recovery techniques.			
4.	Implementation of memory allocation te	chniques.		
5.	Process management and system calls (ir	n UNIX & Windows).		
6.	Implementation of Pipe, Signal & interru	ot in UNIX operating system.		
Course O	utcomes:			
After completion of the course students will able to -				
CO1	Review and implement different CPU sch	eduling algorithms.		
CO2	Analyze and solve different process synch	nronization problems.		
CO3	Analyze and select deadlock handling me	chanisms.		
CO4	Implement and review different memory	allocation techniques.		

CO5	Evaluate and implement process management and system administration.		
Learning	Resources:		
1	Mastering Linux Administration- Alexandru Calcatinge, Julian Balog Packt		
2	Operating Systems Concepts & design - Milan Milenkovic, TMH		
3	Operating Systems: Internals and Design Principles-William Stallings-Pearson		
	DATABASE SYSTEMS LAB. (Part II)		
Objective	:		
1.	Describe the basics of SQL		
2.	Construct queries using SQL		
3.	Demonstrate basic database tuning principles		
4.	Implement PL/SQL Concepts and Constructs		
Pre-Requ	isite:		
1.	DBMS knowledge (ITPC205)		
Module	Content		
1.	Creating a Table, Inserting/ updating Values, Adding and Dropping Constraints in a table		
2.	Using The SELECT statement, Using the WHERE clause, Using Logical Operators in the WHERE clause,		
	Using IS, IN, NOT IN, BETWEEN, LIKE, MINUS, ALL, ORDER BY, GROUP BY and HAVING Clause, Using		
	Aggregate Functions, Combining Tables using JOINS, Sub queries, Printing date in specified format,		
	Using ROUND() function, Taking inputs from user, Using ON DELETE CASCADE		
3.	Creating Views, Dropping Views, Creating Column Aliases		
4.	Tuning: Through query, using Indexing		
5.	Using basic PL/SQL Structure, Using Conditional statements in PL/SQL, Using Basic loops in PL/SQL,		
	Using Cursors in PL/SQL, Using Triggers in PL/SQL		
Course O	utcomes:		
After com	npletion of this course the students will be able to -		
CO1	handle table schema, its different constraints and populating such schemas		
CO2	compose queries to retrieve data from a Database		
CO3	facilitate some management of a Database		
CO4	explain some designing issues of a database through tuning		
CO5	implement conditional statements, basic loops, cursors and triggers in PL/SQL		
Learning	Resources:		
1	Ivan Bayross, SQL, PL/SQL the Programming Language of Oracle, BPB Publications, ISBN:		
	9788176569644		
2	Abraham Silberschatz, Henry F. Korth, S.Sudarshan, Database System Concepts, McGraw-Hill, ISBN:		
	9789332901384		

Name of the course		MACHINE LEARNING LAB	
Course Code: ITPEC203BL		Semester: 2 nd	
Duration: 6 months		Maximum Marks: 100	
Teaching	Scheme	Examination Scheme	
Practical	: 3 hrs/week	Laboratory Journal Book and Results:	
		40 Marks	
Credit Po	ints: 1.5	Viva-Voce conducted during semester:	
		40 Marks	
		Attendance, Overall Conducts, Skill etc. :	
		20 Marks	
Objective	2:		
1.	To learn how to make use of data sets ir	implementing the machine learning algorithms	
2.	To implement the machine learning con	cepts and algorithms in Python language	
Pre-Requ	isite:		
1.	Programming knowledge in Python		
Module	Laboratory Assignments		
1	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on		
	a given set of training data samples. Read the training data from a .CSV file.		
2	Implement the Regression algorithm in order to fit data points. Select appropriate data set for you		
	experiment and draw graphs.		
3	For a given set of training data stored in a .CSV file, implement and demonstrate the Candidate		
	Elimination algorithm to output a description of the set of all hypotheses consistent with the train		
	examples.		
4	Write a program to demonstrate the working of the decision tree based algorithm. Use a		
	appropriate data set for building the dec	cision tree and apply this knowledge to classify a new sample	
5	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as		
	.CSV file. Compute the accuracy of the c	lassifier, considering few test data sets.	
6	Write a program to construct a Bayesiar	1 network considering data set stored in a .CSV file.	
7	Apply EM algorithm to cluster a set of d	lata stored in a .CSV file. Use the same data set for clustering	
	using k-Means algorithm. Compare the results of these two algorithms and comment on the quality		
0	of clustering. You can add Python ML library in the program.		
ð	correct and wrong predictions. By then ML library can be used for this problem		
<u>م</u>	Write a program to implement powe Payesian Classifier, Buthan Millibrary, can be used for this		
	nrohlem		
10	Build an Artificial Neural Network by im	nlementing the Backpropagation algorithm	
	and test the same using appropriate dat	a sets.	
Course O	Course Outcomes:		
After suc	cessful completion of this course. the lear	ners will be able to -	

CO1	Understand the implementation procedures for the machine learning algorithms.
CO2	Design Java/Python programs for various Learning algorithms.
CO3	Apply appropriate data sets to the Machine Learning algorithms.
CO4	Identify and apply Machine Learning algorithms to solve real world problems

THIRD SEMESTER

		3 rd SEMESTER					
SL.				т	D	CONTACT	
NO.				1	1	HRs./WEEK	CREDIT
THEC	DRY						
01	ITOEC301	A: Quantum Computing	3	0	0	3	3
		B: Big Data Analytics					
		C: Software Project Management					
D: Information and System Security							
E: Social Network Analysis							
SESSI	ONAL/PRACTICAL		•		•		
01	ITPRJ302	Dissertation (Part 2)	0	0	18	18	9
02	ITASGN302	Comprehensive Viva-voce	0	0	0	0	1
TOTAL		3	0	18	21	13	

Name of the course		QUANTUM COMPUTING			
Course Code: ITOEC301A		Semester: 3 rd			
Duration: 6 months		Maximum Marks: 100			
Teaching	Scheme	Examination Scheme			
Theory: 3	3 hrs./week	Mid Term I: 15 Marks			
Credit Po	ints: 3	Mid Term II: 15 Marks			
		Assignment, Test based on assignments	s, Surpris	e tests,	
		Quizzes, Presentations, Attendance etc. :	20 Mark	ĸs	
	End Semester Exam: 50 Marks				
Objective	Objective:				
1.	To develop mathematical foundation for application in Quantum Computing.				
2.	To introduce the fundamentals of quantum computing and understand the basic postulates of				
	quantum mechanics.				
3.	To apply quantum algorithms for solving various problems.				
Pre-Requ	isite:				
1.	Mathematics I [BS(CS/IT)101], Physics [BS(CS/IT)]102				
2.	Design and Analysis of Algorithms [PC(CS/IT)406]				
Module	Content Hours Marks				
1	Mathematical Preliminaries: Representation of states in linear vector space, Basis 8				
	and Dimensions, Inner Product, Orthonormality, Bra-Ket Formalism, Hilbert				
	Space, Hermitian, Unitary, Normal and Projection Operators, Tensor Product,				

	Density Operator.		
2	Introduction to Quantum Mechanics: Classical Deterministic Systems,	6	
	Probabilistic Nature of Quantum Systems, Basics of Quantum Theory,		
	Schrodinger's Equation and Born Rule, Wave -Particle Duality, Postulates of		
	Quantum Mechanics, Dirac Formalism, Stern-Gerlach Experiment and		
	Measurement, Electron Spin, Superposition of States, Quantum Entanglement.		
3	Quantum Circuits: Bits and Qubits, Bloch sphere	8	
	representation of a qubit, multiple qubits. Classical gates versus quantum gates,		
	single qubit gates, multiple qubit gates, design of quantum circuits.		
4	Quantum Information and Cryptography: Comparison between classical and	8	
	quantum information theory. Bell states. Quantum teleportation. Quantum		
	Cryptography, no cloning theorem.		
5	Quantum Algorithms: Introduction to quantum algorithm, quantum parallelism,	8	
	Deutsch's algorithm, Deutsch's-Jozsa algorithm, Shor factorization algorithm,		
	Grover Search algorithm, Simon's algorithm, Quantum Fourier Transform.		
Course O	utcomes:		
After con	ppletion of this course students will be able to-		
CO1	Define Hilbert Space and Operators.		
CO2	Explain basic concepts of quantum mechanics as applied in Quantum computing.		
CO3	Develop quantum logic gate circuits.		
CO4	Differentiate the classical and quantum information processing concepts.		
CO5	Implementation of simple quantum algorithms using quantum parallelism.		
Learning	Resources:		
1.	Quantum Computation and Quantum Information, Michael A. Nielsen and Is	saac L.	Chuang,
	Cambridge University Press 2010.		
2.	Quantum computing explained, David McMahon, Wiley-interscience, John Wi	iley & So	ons, Inc.
	Publication 2008.		
3.	Quantum computing for computer scientists, Noson S. Yanofsky, Mirco A. Man	nucci, Ca	mbridge
	University Press 2008		
4.	Introduction to Quantum Mechanics, 2nd Edition, David J. Griffiths, Prentice Hall Ne	ew Jersey	1995
5.	Reskill Lecture notes http://www.theory.caltech.edu/~preskill/ph229/.Engineering Circuit Analysis,		
	W.H. Hyat, J.E. Kemmerly & S.M. Durbin, The Mc Graw Hill		
6.	Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol I	I: Basic To	ools and
	Special Topics, Benenti G., Casati G. and Strini G, World Scientific.		

Name of the course:	BIG DATA ANALYTICS
Course Code: ITOEC301B	Semester: 3 rd
Duration: 6 months	Maximum Marks: 100

Teaching Scheme		Examination Scheme			
Theory Contact Hrs.: 3 hrs/week		Mid Semester-1 Exam: 15 Marks			
Tutorial Contact Hrs.:		Mid Semester-2 Exam: 15 Marks			
Credit Po	int: 3	Assignment, Quiz & class attendance: 20	√larks		
		End Semester Exam: 75 Marks (to be	mapped	into 50	
		marks)			
Objective	2:				
1.	To understand Big Data and its uses				
2.	To provide an overview of Hadoop and i	ts Ecosystem			
3.	To understand MapReduce Jobs				
4.	To learn HDFS concepts				
5.	To provide exposure to Big Data Analytic	cs with R			
Pre-Requ	isite:				
1.	Database Design				
2.	Database Design Lab.				
Module	Content		Hours	Marks	
1.	Big Data Overview and Applications		3		
	Definition and History of big data, Elements of big data, Advantages and				
	Disadvantages of big data, Using big data in businesses				
2.	Technologies for handling Big Data				
	Introduction to Hadoop, Functioning of Hadoop, Cloud Computing for big data				
3.	Understanding Hadoop Ecosystem		8		
	HDFS, MapReduce, Hbase, Hive, Pig, Big SQL				
4.	MapReduce		7		
	Anatomy of a MapReduce Job Run, Failures, Job Scheduling, Shuffle and Sort, Task				
	Execution, MapReduce Types and Forma	ats, MapReduce Features			
5.	HDFS(Hadoop Distributed File System)		8		
	Design of HDFS, HDFS Concepts, Com	mand Line Interface, Hadoop file system			
	interfaces, Data Flow, Data Ingest with	n Flume and Sqoop and Hadoop archives,			
	Hadoop I/O				
6.	Big Data Analytics with R		5		
	Machine Learning: Introduction, Supervised Learning, Unsupervised Learning,				
	Collaborative Filtering, Big Data Analytics with R, Integrating R and Hadoop				
Course O	utcomes:	a abla ta			
	ompletion of this course the students will be able to -				
CO1					
CO2					
03	classify the components of Hadoop Ecosystem				
CO4	demonstrate Jobs in Hadoop Environme	ent			

CO5	analyze data on Distributed File System
CO6	apply Machine Learning Techniques using R
Learning	Resources:
1.	Seema Acharya, Subhashini Chellappan, Big Data and Analytics, Wiley India Pvt. Ltd, ISBN:
	9788126579518
2.	Tom White, Hadoop: The Definitive Guide - Storage and Analysis at Internet Scale, Shroff Publishers
	& Distributors Pvt Ltd, ISBN: 9789352130672
3.	Mark Hornick, Tom Plunkett, Using R to Unlock the Value of Big Data, McGraw-Hill Education -
	Europe, ISBN: 9780071824385
4.	Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer-Verlag Berlin and Heidelberg
	GmbH & Co. KG, ISBN: 9783540430605
5.	Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Mining of Massive Datasets, Cambridge
	University Press, ISBN: 9781316638491
6.	Bill Franks, Taming The Big Data Tidal Wave, John Wiley & Sons Inc, ISBN: 9781118208786

Name of the course		SOFTWARE PROJECT MANAGEMENT					
Course Code: ITOEC301C		Semester: 3rd					
Duration: 6 months		Maximum Marks: 100					
Teaching	Scheme	Examination Scheme					
Theory: 3 hrs/week		Mid Term I Exam: 15 Marks					
Credit Points: 3		Mid Term II Exam: 15 Ma	id Term II Exam: 15 Marks				
Class performance & Attendance: 20 M		arks					
	End Semester Exam & Viva: 50 M		arks				
Objective	2:						
1.	To understand the Software Project Planning and Evaluation techniques.						
2.	To plan and manage projects at each stage of the software development life cycle.						
3.	To develop skills to manage the various phases involved in project management and people						
	management.						
4.	To deliver successful software projects that support organization 's strategic goals.						
Pre-Requisite:							
1. Software Engineering							
Module	Content	Hours	Marks				
1	SOFTWARE PROJECT		6				
	Concept of Project, Software proj	ect, Importance of Software Project					
	Management, Activities, Methodologie	es, Categorization of Software Projects,					
	Setting objectives, Project portfolio Management, Risk evaluation, Strategic						
	program Management, Stepwise Project Planning.						

2	PROJECT LIFE CYCLE AND EFFORT ESTIMATION	8				
	Software process and Process Models – Choice of Process models – Rapid					
	Application development, Agile methods – Dynamic System Development Method,					
	Basics of Software estimation – Effort and Cost estimation techniques – COSMIC					
	Full function points - COCOMO II - a Parametric Productivity Model.					
3	ACTIVITY PLANNING AND RISK MANAGEMENT	8				
	Objectives of Activity planning, Project schedules, Activities, Sequencing and					
	scheduling, Gantt chart, Network Planning models, Critical path method, PERT					
	technique, Resource Allocation, Cost schedules. Industrial strength software:					
	features & challenges.					
	Risk identification, Assessment, Risk Planning, Risk Management: Proactive &					
	Reactive risk management.					
4	PROJECT MANAGEMENT AND CONTROL	8				
	Framework for Management and control, Collection of data, Visualizing progress,					
	Cost monitoring, Earned Value Analysis,					
	Project tracking, change control, Contract Management. Software Configuration					
	Management- need, basic configuration, baseline of configuration.					
	Concept of quality, quality attributes, iron triangle, TQM.					
5	STAFFING IN SOFTWARE PROJECTS	6				
	Managing people, Organizational behavior, Best methods of staff selection, The					
	Oldham – Hackman job characteristic model, Health and Safety, Ethical and					
	Professional concerns – Working in teams, Decision making, Organizational					
	structures, Dispersed and Virtual teams, Leadership, role of project manager.					
Course O	utcomes:					
After con	npletion of the course students will able to -					
01	Assess Project Management principles while developing software.					
CO2	Identify the basic project management concepts, framework and the process models					
CO3	Review about software process models and software effort estimation techniques.					
CO4	Estimate the risks involved in various project activities.					
CO5	Define the checkpoints, project reporting structure, project progress and tracking m	nechanisr	ns using			
	project management principles.					
CO6	Determine staff selection process and the issues related to people management.					
Learning	Resources:					
1	Bob Hughes, Mike Cotterell and Rajib Mall: Software Project Management – TMH					
2	Robert K. Wysocki — Effective Software Project Management – Wiley					
3	Software Engineering: A Practitioner's Approach- Roger PressmanTMH					
4	Ingenieria del Software Ian SommervillePearson					
5	Walker Royce: —Software Project Management - Addison-Wesley					
6	Gopalaswamy Ramesh, —Managing Global Software Projects- McGraw Hill					
7	Software Engineering- Pankaj Jalote- Wiley India					

INFORMATION AND SYSTEM SECURITY					
Semester: 3 rd					
Maximum Marks: 100					
n paper	& class				
attendance: 20 Marks					
e mapped	into 50				
Computer Network (ITPC103)					
Hours	Marks				
es 4	10				
d: 12	30				
ey					
ч ,					
у, ж					
Encryption: RSA side channel attacks key exchange algorithm KDC					
Transport and IP laver security: Transport laver security (TLS): overview. 5 20					
architecture, SSL.					
ty					
ty					
ty et 10	20				
ty et 10 s,	20				
ty et 10 s, eb	20				
ty et 10 s, eb s,	20				
ty et 10 s, eb s,	20				
	m paper a pe mapped pe mapped Hours res 4 pd: 12 ey A, cy, ey w, 5				

Course O	Outcomes:				
After completion of this course the students will be able to -					
CO1	Assess different methodologies for data and system security				
CO2	Investigate different cryptography techniques				
CO3	Assess different security model for transport and IP layer				
CO4	Compose different security model for web				
CO5	Investigate different media security methodologies				
CO6	Real life design of problems and solution for security application(e.g. in cloud or IOT)				
Learning Resources:					
1.	Cryptography & Network Security : Principles and practices: William Stalling, Pearson				
2.	Cryptography & Network Security: Atul Kahate, TMH				
3.	Cryptography & Network Security: Forouzen. Mc.graw hill				

Name of the course		SOCIAL NETWORK ANALYSIS					
Course Code: ITOEC301E		Semester: 3 rd					
Duration: 6 months		Maximum Marks: 100					
Teaching Scheme		Examination Scheme					
Theory: 3 hrs/week		Two Mid term Exam: 30 Marks					
Credit Points: 3		Assignment & Quiz: 10 Marks					
Term paper: 05 Marks							
	Presentation on selected topics: 05 Marks						
	End Semester Exam: 50 Marks						
Objective	2:						
1.	To study the concept of online social network in graph theoretic concept						
2.	To study centrality measures of online social network graph						
3.	To study social network content and analyze the sentiment						
4.	To study rumour detection in social media						
5.	To study influence maximization and minimization in social media						
Pre-Requisite:							
1.							
Module	Content			Marks			
1	Introduction: A General Overview: online social network(OSN), online social			6			
	network as graph, topology, Erdos Reyni concept of graph, concept of six degree						
	separation, small world network, large scale network, scale free network,						
	propagation approaches through social network graph						

2	Centrality measures: Graph centrality concept, Node degree centrality,	6	15					
	Betweenness centrality, closeness centrality, page rank centrality, Eigen vector							
	centrality, K-core, Homophily in social network							
3	Sentiment analysis: Concepts of natural language processing, Sentiment: positive,	5	15					
	negative and neutral. NLP based analysis of sentiment, machine learning							
	approaches for analysis of sentiment in OSN							
4	Rumour detection: Detection of rumour in social network, content based rumour	5	15					
	detection, generating dictionary for identifying misinformation, machine learning							
	approaches to differentiate rumour content, interaction based rumour detection,							
	identifying the profile generating rumour , anti rumour campeining							
5	Influence maximization: Introductory concepts. Different approaches of influence	6	15					
	maximization. Recent trends in influence maximization, applications.							
6	Influence minimization: Introductory concepts. Different approaches of influence	4	12					
	minimization. Application of influence minimization for rumour content in OSN							
7	Clustering and community detection: Community detection in online social 4 10							
	network, clustering, clustering coefficient, modularity, transitivity, average path							
	length							
8	Application of SNA: Real world social network issues and solution, Distributed	4	12					
	network generation for large scale/ scale free social network.							
Course Outcomes:								
After completion of this course the students will be able to -								

FOURTH SEMESTER

4 th SEMESTER							
SL.	PAPER CODE	PAPER NAME	L	т	Р	CONTACT	CREDIT
NO.			_	•	•	HRs./WEEK	
SESSIONAL/PRACTICAL							
01	ITPRJ403	Dissertation (Part 3)	0	0	24	24	12
TOTAL		0	0	24	24	12	