M.Tech, CSE (AI and ML) Semester Wise Course Structure & Detailed Syllabus

		1 ST SEM					
		THEORY					
SL.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT	CREDIT
NO.						HRS./WEEK	
01	PGCSPC101	Mathematical Foundation of Computer Science	3	0	0	3	3
02	PGCSPC102	Advanced Data Structure	3	0	0	3	3
03	PGCSRES101	Research Methodology and IPR	3	0	0	3	3
04	PGCSAUD101	Universal Human Values (Audit paper)	3	0	0	3	0
05	PGCSPEC101	A. Machine Learning	3	0	0	3	3
		B. Data Science					
06	PGCSPEC102	A. Artificial Intelligence	3	0	0	3	3
		B. Distributed Database					
		SESSIONAL / PRACTICAL		•		•	
01	PGCSPCL101	Advanced Data Structure Lab	0	0	3	3	1.5
02	PGCSPECL101	A. Machine Learning Lab	0	0	3	3	1.5
		B. Data Science Lab					
		Total	18	0	6	24	18

L – Lecture (total lecture 36), T – tutorial, P – practical

Name of t	he Course	Mathematical Foundation of Computer Science				
Course Co	ode: PGCSPC101	Semester: 1 st				
Duration:	6 month	Maximum Marks: 100				
Teaching	Scheme	Examination Scheme				
	ontact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks				
	Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks				
	: 0 hrs./week	Other Assessment tools (Assignment, Quiz etc.): 20 Ma				
Credit Po		End Semester Exam:75 Marks (To be mapped into 50 m	nark)			
Objective						
1.	problems.	es, Eigenvectors diagonalization of matrices for understand	0			
2.	sciences	sis and dimension with corresponding applications in the f	ield of c	computer		
3.	To understand Fourier series repre					
4.	i	variable and probability distribution.				
5.		s and combinatorics in the context of discrete probability.				
6.	To learn recurrence relations and g					
7.	To understand Algebraic structures	s and classify Boolean function.				
Pre-Requ						
1.	Discrete Mathematics					
2.	Engineering Mathematics (UG lev	el)				
Detailed S						
Module	Content		Hrs	Marks		
1	intersection of subspaces, Linear s	or space, Definitions and examples, Subspace, Union and sum of two subspaces, Linear combination, independence	10			
	Replacement Theorem, Extension	herators of vector space, Finite dimensional vector space, theorem, Statement of the result that any two bases of a have same number of elements. Dimension of a vector				
	value and eigenvectors of matrice	ion of basis with special emphasis on Rn ($n \le 3$), Eigen es, Caley Hamilton Theorem, Simple properties of eigen netric and general matrices, Diagonalisation.				
2	Counting Techniques: Pigeon- Recurrence relations: Formulation recurrence relations, Solution of li second order) by (i) The iterative	hole Principle, Principles of inclusion and exclusions; & Modelling of different counting problems in terms of near recurrence relations with constant coefficients(up to method (ii) Characteristic roots method (iii) Generating	4			
3	Confidence intervals, Test of hypo	variable, Distribution function, Interval estimation, thesis, Markov process with special emphasis on Markov	6			
4	chain.		8			
4	functions, Trigonometric Series, Fourier coefficients, Even and C formula. Fourier transform, Prop	ries and Transform: Periodic functions, Trigonometric Fourier series, Dirichlet conditions, Euler formula for Odd functions, Half range series expansion, Parseval's perties of Fourier transform, Fourier sine and cosine	0			
5		hism: Algebraic Structures with one Binary Operation,	8			
		Congruence Relation and Quotient Structures, Permutation ient group, Homomorphism & Isomorphism (Elementary				
	and Fields. Boolean algebra and	ures with two Binary Operation, Rings, Integral Domain Boolean Ring, Identities of Boolean Algebra, Duality,				
Carrent	Representation of Boolean Function	11				
Course ou		ld ha chla ta				
,	Pletion of the course, a student would		and and	Ju these		
CO 1	concepts to various vector spaces			-		
CO 2		recurrence relations and generating function prics in the context of discrete probability.		& also		
CO 3	environment.	, random variable and distribution and their application				
CO 4	Write periodic function in terms Fourier transforms.	s of sine and cosine terms in Fourier series and also to g	et know	vledge in		

CO 5	Solve problems using counting techniques and combinatorics in the context of discrete probability.
CO6	Classify the algebraic structure for a given mathematical problem and evaluate Boolean functions and
	simplify expressions using the properties of Boolean algebra
Learning	Resources:
1.	C L Liu and D P Mohapatra, Elements of Discrete Mathematics A Computer Oriented Approach, 3rd
	Edition by, Tata McGraw – Hill.
2.	N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI.
3.	Loknath Debnath–Integral transforms and their Applications.
4.	B. Chakraborty and M.K. Sen–Discrete mathematics.
5.	Koshy–Discrete Mathematics and Application
6.	Jyoti Medhi–Stochastic Process.
7.	S.K. Mapa – Abstract and Linear Algebra.
8.	Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw – Hill
9.	Susanna S. Epp, Discrete Mathematics with Applications,4th edition, Wadsworth Publishing Co. Inc.
10.	Douglas Brent West, Introduction to Graph Theory, Prentice Hall.
11.	B. Davies-Integral transforms and their Applications.
12.	Friedberg, Insel, Spence–Linear Algebra
13.	Clark John, Holton Derek Allan, A First Look at Graph Theory, World Scientific.

Name of t	he Course	Advanced Data Structure				
Course C	ode: PGCSPC102	Semester: 1 st				
Duration	6 month	Maximum Marks: 100				
Teaching	Scheme	Examination Scheme				
Theory C	ontact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks				
Tutorial (Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks				
Practical	: 0 hrs./week	Other Assessment tools (Assignment				
Credit po		End Semester Exam:75 Marks (To	be mapped	into 50 mark)		
Objective						
1.	To understand the concept of time a	nd space complexity				
2.	To implement balanced trees					
3.	To implement various priority queu					
4.		uctures such as hashing, tries and suffi	x trees			
Pre-Requ						
1.	Data Structure, Algorithm					
Detailed S	Syllabus					
Module	Content		Hrs	Marks		
1	Review of Fundamental Data Struc	ctures Recap of basic data structures	4			
		ues) Analysis of time and space				
	complexity Big O notation					
2		earch trees (BSTs), AVL trees Red-	10			
		for efficient indexing and searching.				
		cient predecessor/successor search				
	operations					
3		eaps and max-heaps, Priority queue	6			
	operations (insert, delete, extract-mi	<u>^</u>	-			
4	5	ind using array, linked list, union by	8			
	rank, union by rank and path compr					
5		and collision resolution, Tries and	8			
Carr	Patricia trees, Suffix trees					
Course ou		he shle to:				
	pletion of the course, a student would		lom			
CO 1		ictures and algorithms for a given prob	nem.			
CO 2	Implement various balanced tree of					
CO 3	Implement various Priority Queue	e data structures.				
CO 4	Apply disjoint set data structure	Trice and Suffix trees				
CO 5	Design algorithms using Hashing,	Tries and Suffix trees.				
0	Resources:	tion" THCommon CE License D	I Divert	d C. Stain DIII		
1.		tion", T.H.Cormen, C.E. Leiserson, R	.L.Kivest an	a C. Stein, PHI		
2.	Jon Kleinberg and Éva Tardos, Alg		an 1000			
3.	Skiena, Steven S. The algorithm de	esign manual. Vol. 2. New York: sprin	ger, 1998.			

Name of	the Course	Research Methodology and IPR					
Course Code: PGCSRES101		Semester: 1 st					
Duration		Maximum Marks: 100					
Teaching	Scheme	Examination Scheme					
Theory C	ontact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks					
Tutorial	Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks					
Practical	: 0 hrs./week	Other Assessment tools (Assignment, Quiz etc.):20 M	Marks				
Credit Po	ints: 3	End Semester Exam:75 Marks(To be mapped into 50) marks)			
Objective	•						
1.	To learn the features of Research I	Methodology					
2.	To identify the rules of Copy Righ	t, Design and Trade Mark					
3.	To analyse Intellectual Property R	<u> </u>					
4.	To apply for a Patent and defend F	Patent Prosecution					
Pre-Requ							
1.	Nil						
Detailed S	ř						
Module	Content		Hrs	Marks			
1	supervisor, Academic research an citation based search, cite score Science and Scopus. Database se	ch degree, selection of research topic, the role of d developmental research. Keyword based search and and impact factor. Literature survey using Web of earch using Science Direct, Springer Link, Research holar etc. Reference Management Software: Jabref,	10				
2	Investigation and generation of data. First principles model and empirical model. 6 Features and constraints of Technical Presentation. Standard table, graph and image. Technical presentation vs journal paper. Unethical activity: data fabrication and plagiarism.						
3	Density Function, Mean and	and Continuous Probability Distribution.Probability Variance of Probability Density Function. Normal Theorem. Testing of Hypothesis, Errors in decision	6				
4	Definition of IPR, types of Intelle "property" in IPR, meaning of "i duration, Invention and patent, rig description, specification, claims f application through Patent Agen	ctual Property, meaning of "right" in IPR, meaning of ntellectual" in IPR, infringement in IPR, IPR and its ghts of patentee. Process for grant of patent: abstract, for invention. Filing of Application: Self application or it. Types of Application: Provisional and Complete lication, International Application under Patent	8				
5	Copyright, its features and dura Agreement. Trade Marks Act, it Trade Mark World Intellectual Pr (EPO) Database, Berne Conventio	ation, Design Act, its feature, duration and Hague ts feature and duration, International application for roperty Organization (WIPO), European Patent Office on, International Bureau (IB) of WIPO.	6				
Course ou							
	pletion of the course, a student wou						
CO 1	Explain the techniques Literature						
CO 2	Interpret Data Modelling and Te						
CO 3	Examine the concept of Design of Apply for a P atent in the context	<u>^</u>					
CO 4 CO 5	Apply for a Patent in the context						
	Resources:	e Organizations for IPR and Database					
1.		rch Methodology by R. S. Agarwal, published by	B. R.	Publishing			
2.		n Chandra, published by Narosa Publishing House					
2. 3.		Ohdedar, published by Bengal Library Association					
3. 4.		y Rights by N. K. Acharya, published by Asia Law Hou	se				
5.		perty Rights by V. K. Acharya, published by Asia Law Hou	50				
J.	Law relating to intellectual FIOp	wity rights by v. ix. Anaja, published by Lexis MCAIS					

Name of t	he Course	Universal Human Values (UHV)				
Course C	ode: PGCSAUD101	Semester: 1 st				
Duration	6 month	Maximum Marks: 100				
Teaching	Scheme	Examination Scheme				
Theory C	ontact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks				
Tutorial	Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks				
Practical	: 0 hrs./week	Other Assessment tools (Assignment, Quiz etc.): 20 M	larks			
Credit Po	ints: 3	End Semester Exam:75 Marks (To mapped into 50 ma	ırks)			
Objective	:					
1.		g ethics, human values and value education.				
2.	To understand social responsibilitie	es of an engineer.				
3.	To develop a holistic perceptive	based on self-exploration about themselves, family,	society	, nature,		
	existence.					
4.		f the harmony in the human being, family, society, nature	•			
5.	Development of commitment and c					
6.		g ethics, human values and value education.				
Pre-Requ						
1.	Nil					
Detailed S	Syllabus					
Module	Content		Hrs	Marks		
1	Introduction: Introduction to valu	e education, Engineering ethics: Social responsibilities	6			
	of an engineer.	, <u> </u>				
2	Harmony in the human being: Se	6				
3		ciety to extend the family: Understanding harmony	9			
0		lerstanding values in human relationships. Trust and	-			
	Respect as the foundational values					
4		of the harmony at all levels: Understanding harmony	8			
	in the nature and existence holistic	perception of harmony at all levels of existence include				
	practice session to discuss human b	being as cause of imbalance in nature.				
5	Implication of the above Holistic	c Understanding of Harmony on Professional Ethics	7			
		ict. Human rights violation and social disparities issues				
	in professional ethics: value based	life and profession.				
Course ou						
	pletion of the course, a student woul					
CO 1		alue and starts applying them in their life and profession.				
CO 2		ly, intention and competence, happiness and physical faci	lities.			
CO 3		being in ensuring harmony in society and nature				
CO 4	-	l unethical practices and start working out the strateg	y to ac	tualize a		
~~ -	harmonious environment wherever they work.					
<u>CO 5</u>		alue and starts applying them in their life and profession.				
	Resources:		D .1 !			
1.	A.N. Tripathi, new age international publishers: 2003- Human values. Human Society in Ethics 2 polities- Bertrand Russell.					
2.	Small is beautiful – E.F. Schum value Education :Gour .R.R./sang	nacher philosophy of humanism: Corliss Layout. Found al R.	lation (Course in		
	value Education :Gour .R.R./sang	al K.				

Name of t	he Course	Artificial Intelligence		
Course Co	ode: PGCSPEC102A	Semester: 1 st		
Duration:	6 month	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory C	ontact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks		
Tutorial (Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks		
Practical : 0 hrs./week		Other Assessment tools (Assignment, Quiz etc.): 20 Marks		
Credit Points: 3		End Semester Exam:75 Marks(To be mapped into 50 marks)		
Objective	:			
1.	The main purpose of this cour	se is to provide the most fundamental knowledge to the students so that they		
	can understand what the AI is.			
2. Apply the basic principles, models and algorithms of AI to recogn		nodels and algorithms of AI to recognize model and solve problems in the		
	analysis and design of information	tion systems.		

3.	Analyse the structures and algorithms of a selection of techniques related to searching,	reason	ning and
	language processing.		0
Pre-Requ			
1.	Strong knowledge of Mathematics.		
2.	Good command over programming languages		
3.	Design & Analysis of Algorithm		
Detailed S	Syllabus		
Module	Content	Hr s	Marks
1	Introduction of AI and Agents: Overview of Artificial Intelligence, Problems of AI, AI	5	
1	technique, Nature of Environment, Intelligent Agents, Structure of Agents, goal based agents,	5	
	utility based agents, learning agents, Problem solving agents. Knowledge Based Agents.		
2	Problem Solving: Problem Space & Search: Defining the problem as state space search,	3	
	production system, problem characteristics, issues in the design of search programs.		
3	Search Techniques: Searching for solutions; uniform search strategies: breadth first search,	10	
-	depth first search, depth limited search, bidirectional search, comparing uniform search		
	strategies. Greedy best-first search, A* search, heuristic search, Hill climbing search,		
	simulated annealing search, the minimax search procedure, alpha-beta pruning, constraint		
	satisfaction problems, Games, optimal decisions & strategies in games.		
4	Knowledge & Reasoning and Representing Knowledge using Rules: Knowledge	7	
	representation issues, representation & mapping, approaches to knowledge representation,		
	The First Order Predicate Logic, Semantic Nets, Frames and Scripts Formalisms, Resolution		
	in Predicate Logic, Unification, Strategies for Resolution by Refutation, Procedural verses		
	declarative knowledge, logic programming, forward verses backward reasoning, matching,		
	control knowledge. Automated Reasoning.		
5	Planning and Learning: Overview, components of a planning system, Goal stack planning,	5	
	Hierarchical planning, other planning techniques, partial order planning, planning graphs,		
	planning with propositional logic. Forms of learning, inductive learning, Learning from		
	observations learning decision trees, learning using relevance information, neural net learning		
	& genetic learning. Reinforcement Learning, Perception,	-	
6.	Natural Language Processing, Expert Systems and others: Introduction, Syntactic	6	
	processing, semantic analysis, discourse & pragmatic processing, expert system shells,		
	knowledge acquisition, Artificial Neural Networks, Human-Computer Interaction, Hidden		
Course or	Markov Models, Rule-based systems, AI-Based Programming Tools.		
Course ou	pletion of the course, a student would be able to:		
CO 1	Analyse different types of AI techniques and Agents		
CO 1 CO 2	Estimate the problems of Space and Search		
CO 2 CO 3	Apply different search techniques that play an important role in AI		
CO 3 CO 4	Determine the basic issues of knowledge representation and reasoning		
CO 4	Implement different planning system and Learning System.		
CO 5	Apply Natural Language Processing, Expert Systems and AI-Based Programming Tools		
	Resources:		
1.	Introduction to Artificial Intelligence, E. Charniak, et.al., PEARSON		
2.	Artificial Intelligence, P. H. Winston, PEARSON		
3.	Artificial Intelligence, E. Rich and K. Knight, TMH.		
4.	"Artificial Intelligence: A Modern Approach" Stuart Russell, Peter Norvig,2nd Edition, Prent	ice Ha	.11
5.	Artificial Intelligence and Expert Systems – Dan W. Patterson PHI		-
6.	Expert Systems: Principles and Programming- Fourth Edn, Giarrantana/ Riley, Thomson		
7.	Artificial Neural Networks, B. Yagna Narayana, PHI		
8.	The Handbook of Artificial Intelligence, Vol.1,2 and 3, Kaufman Inc.		
9.	Logic & Prolog Programming, Saroj Kaushik, New Age International		
10.	PROLOG Programming for Artificial Intelligence. Ivan Bratka- Third Edition – Pearson Edu	cation	1

Name of the Course	Distributed Database
Course Code: PGCSPEC102B	Semester: 1 st
Duration: 6 month	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory Contact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks
Tutorial Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks
Practical : 0hrs/week	Other Assessment tools (Assignment, Quiz etc.): 20 Marks
Credit Points: 3	End Semester Exam:75 Marks (To be mapped into 50 marks)

Objective	•		
1.	To explain the basic principles of distributed database systems and its architectures		
2.	To evaluate the efficiency of distributed database design and the distributed query processing	plans	
3.	To handle different concurrency control anomalies and maintain the reliability of distributed t		ons.
4.	To discuss the overall concept of parallel database systems	<u>in uniou e c</u>	01151
Pre-Requ			
1.	Database Management System		
2.	Computer Network		
Detailed S	1		
Module	Content	Hrs	Marks
1	Introduction to Distributed Database Management Systems (DDBMS):	6	
-	Basic idea of DDBMS, homogenous, heterogeneous and federated DDBMS, DDBMS	Ũ	
	fragmentation, replication and allocation concept, global and local schema, key advantages		
	and reliability of DDBMS, different layers of distribution transparency, complications of		
	DDBMS, reference architecture for distributed DBMS- client/server, peer-to-peer, and		
	multidata base systems, global directory issues in distributed DBMS.		
2	DDBMS Design Aspect:	6	
	Design issues of DDBMS, non-replicated, non-fragmented, fully replicated, partially		
	replicated DDBMS, top down & bottom up approach of DDBMS design, reasons for data		
	fragmentation, degree of fragmentation, different type of fragmentations- primary and		
	derived horizontal fragmentation, vertical fragmentation mixed or hybrid fragmentation,		
	correctness rules of fragmentation, data fragment allocation and its associated issues, basic idea of view management, views in controlized and distributed database		
3	idea of view management- views in centralized and distributed database. DDBMS Query Processing:	6	
5	Query processing issues in DDBMS, objectives of distributed query processing, different	0	
	layers of distributed query processing- query decomposition, data localization, global query		
	optimization, distributed query execution, centralized query optimization- main objectives,		
	query processing with translation and optimization steps, concept of distributed query		
	optimization- distributed query processing architecture, mapping global queries into local		
	queries, main issues of distributed query optimization.		
4	Distributed Transaction Management & Reliability Aspects:	12	
	Concept of transaction & its properties, serial and parallel schedule, locking based		
	concurrency control- 2PL & strict 2PL, distributed concurrency control algorithms-		
	centralized & distributed 2PL, time stamp-based concurrency control algorithms, deadlock		
	detection & resolution- centralized, hierarchical and distributed deadlock detection, concept		
	of reliability & different types of failures in DDBMS, idea of local recovery manager,		
	distributed reliability protocols- centralized & distributed 2PC, termination protocol for		
5	2PC-coordinator & participant timeout, non-blocking commit protocol, voting protocol.	6	
5	Parallel Database Systems: Basic idea, objectives, parallel database system architectures- functional architecture,	0	
	shared memory, shared disk, shared nothing & hybrid architectures runctional architecture,		
	cluster & architecture, parallel data placement- round-robin, hash and range based		
	partitioning, parallel query processing- intra & inter operator parallelism.		
Course ou			
After com	pletion of the course, a student would be able to:		
CO 1	Explain the overall concept of distributed database systems and its different associated com	ponents	
CO 2	Choose suitable design strategies for the distributed database systems in the aspects of	data sto	rage and
	views		
CO 3	Analyze different query processing plans applicable for the distributed database systems		
CO 4	Compare various concurrency control mechanisms and recovery issues for distributed datab		
CO 5	Discuss the main idea and features of parallel database system in the aspect of performance	penefits	
Learning 1.	Resources: Stefano Ceri, Guiseppe Pelagatti, "Distributed Databases: Principles and Systems", McGrav	v Hill F	ducation
1.	Indian Edition, 2017.	v 11111 Ľ	uucatioii,
2.	M. Tamer Ozsu, Patrick Valduriez, "Principles of Distributed Database Systems", Springe	er. Thir	1 edition
	2011.	,	
3.	Saeed K. Rahimi, Frank S. Haug, "Distributed Database Management Systems: A Pract	tical Ar	proach".
	Wiley-IEEE Computer Society, Aug, 2010, Print ISBN:9780470407455, Online ISBN:9780		
4.	Chhanda Ray, "Distributed Database Systems", Pearson Education India, 1st Edition, Kind		
	ISBN- 9788131727188, 8131727181.		
5.	Sachin Deshpande, "Distributed Databases", Dream tech Press, Kindle Edition, 2	014, IS	SBN 13:
	9789351197201		

Name of the	e Course M	Iachine Learning					
		Semester: 1 st					
Duration: 6		Maximum Marks: 100					
Teaching So		Examination Scheme					
0		Iid Semester 1 Exam: 15 Marks					
		Iid Semester 2 Exam: 15 Marks					
Practical : () hrs./week O	Other Assessment tools (Assignment, Quiz etc.): 20	Marks				
Credit Poin		nd Semester Exam:75 Marks (To be mapped into					
Objective:	· · · ·						
1. I	Develop an appreciation for what is invo	blved in Learning models from data					
2. U	Understand a wide variety of learning al	gorithms					
3. U	Understand how to evaluate models gene	erated from data					
4. <i>A</i>	Apply the algorithms to a real problem, o	optimize the models learned and report on the expec	ted				
Pre-Requisi	ite						
	Mathematics						
Detailed Sy	llabus						
Module (Content		Hrs	Marks			
H		Machine Learning Algorithms, Data Cleaning, es, Handling Missing Values, Exploration of Data Learning Systems.	5				
	Linear Regression:		7				
I	0	gorithm for Linear Regression Model, Polynomial					
	Classification:	ty.	8				
]	Training a Binary Classifier, Measurir Classifier, Multi-label Classification, Mu	0					
	Some Supervised Machine Learning A		7				
	-	Bayes Classifiers, Decision Trees, Ensembles of	,				
		pport Vector Machines, Model Evaluation and					
	Improvement						
5 I	Dimensionality Reduction:		7				
(Extraction, and Manifold Learning, Principal PCA, Selecting a Kernel and Tuning Hyper- ction Techniques					
6 U H	Unsupervised Learning: Clustering: Creating Product Segments Using Clust Elbow Curve Method, Normalizing the	K-Means, Image Segmentation using clustering, ering, Finding Optimal Number of Clusters Using e Features, Hierarchical Clustering, Compare the erarchical Clustering, Anomaly Detection using	6				
Course outo	comes						
After comple	etion of the course, a student would be a	able to:					
CO 1	Describe the concepts of Machine Lean	rning.					
CO 2	Implement algorithms of Machine Lea	arning.					
CO 3	Develop Machine Learning models						
CO 4	Apply Machine Learning Models to cla						
CO 5		rithms for real-world applications for model optimiz	zation.				
Learning R							
1.	Christopher Bishop. Pattern Recognition	on and Machine Learning. 2e					
2.	Machine Learning by Tom Mitchell, M						
2. 3. 4.	Machine Learning by Tom Mitchell, M	n Recognition: An Introduction, Universities Press, I	Hyderat	oad.			

Name of t	the Course Data	a Science				
		Semester: 1 st				
Duration		Maximum Marks: 100				
Teaching		Examination Scheme				
Theory C	ontact Hrs.: 3 hrs./week Mid	l Semester 1 Exam: 15 Marks				
		l Semester 2 Exam: 15 Marks				
Practical	: 0 hrs./week Oth	er Assessment tools (Assignment, Quiz etc.): 20 M	[arks			
Credit Po		I Semester Exam:75 Marks (To be mapped into 50				
Objective	:					
1.	The course is aimed at Building the fund	damentals of data science.				
2.	Imparting design thinking capability to	build big-data				
3.	Developing design skills of models for l	big data problems				
4.	Gaining practical experience in program	nming tools for data sciences				
5.	Empowering students with tools and tec					
Pre-Requ	isite					
1.	DBMS and e knowledge of one Program	mming Language (Java preferably), Practice of SQL	(queries	s and sub		
	queries), exposure to Linux Environmer	nt	-			
Detailed S	Syllabus					
Module	Content		Hrs	Marks		
1	Introduction: Big Data and Data Scien	ence - Big Data Analytics, Business intelligence vs	4			
		irrent landscape of analytics, data visualisation				
	techniques, visualization software.	1 5 /				
2		Exploratory Data Analysis (EDA), statistical	6			
		and summary statistics) of EDA, Data Analytics				
	Lifecycle, Discovery					
3		ing Initial Hypotheses, Identifying Potential Data	6			
	-	theses on means, proportions and variances.				
4	Regression models: Regression models	ls: Simple linear regression, least-squares principle,	6			
	MLR, Multiple correlation, Partial corre	elation				
5	Linear Algebra Basics: Matrices to r	represent relations between data, Linear algebraic	6			
	operations on matrices, Matrix decomp	position: Singular Value Decomposition (SVD) and				
	Principal Component Analysis (PCA).					
	Data Pre-processing and Feature S	Selection :Data cleaning, Data integration, Data	7			
	, , , , , , , , , , , , , , , , , , , ,	Data Discretization, Feature Generation and Feature				
	Selection, Feature Selection algorithms:	**				
	0 0	: Classifiers, Decision tree, Naive Bayes, k-Nearest	8			
		methods, Random Forests, logistic regression, k-				
	means, Association Rule mining					
Course of						
	pletion of the course, a student would be					
CO 1	Apply data visualization in big-data ana					
CO 2	Utilise EDA, inference and regression to					
CO 3	Utilize Matrix decomposition technique	es to perform data analysis				
CO 4	Apply data pre-processing techniques	-				
CO 5	Apply Basic Machine Learning Algorith	thms				
	Resources:					
1.	Mining of Massive Datasets. v2.1, Ju University Press. (2019). (free online)	ure Leskovek, Anand Rajaraman and Jefrey Ullm	nan., Ca	ambridge		
2.		Seema Acharya, Subhasini Chellappan, Wiley (2019))			
3.		n The Frontline, Cathy O'Neil and Rachel Schutt, O'				
4.						
5.	Data Mining: Concepts and Techniques", Third Edition, 2 Jiawei Han, Micheline)Kamber and Jian Pei, ISBN 0123814790. Big Data and Business Analytics, Jay Liebowitz, CRC press					
6.	Data mining methods, 24th edition, C. F	· · ·	ence pi	-00		
J	Duta mining methods, 24th controll, C. F	rujun, 1 10000				

Name of	the Course	Advanced data structure lab			
Course C	Code: PGCSPCL101	Semester: 1 st			
Duration	: 6 month	Maximum Marks: 100			
Teaching	Scheme	Examination Scheme, Total Marks	: 100		
Theory C	Contact Hrs.: Nil	Attendance : 10			
Tutorial	Contact Hrs.: Nil	Preparation of Lab Report : 30			
Practical	: 3 hrs./week	Experimental data/ Precision of wo		30	
Credit Po	pints: 1.5	Presentation/ analysis of the result	: 10		
		Viva Voce: 20			
Detailed	v				
Module	Content		Hrs	Marks	
1	To perform various operations on A	VL trees.	3		
2	To perform various operations on B		6		
3	To perform various operations on R	ted Black trees.	3		
4	To implement and compare perform	nance of various priority queues	3		
5		ucture and compare the performance	6		
	based on underlying methodology u				
6.		se performance of different collision	6		
7	resolution techniques.	·	6		
7.	To implement Tries and Patricia Tri	les	6		
<u>8.</u>	To implement Suffix trees		3		
Course of		the oble to:			
CO 1	pletion of the course, a student would				
CO 1 CO 2	Implement various balanced search trees				
CO 2 CO 3	Compare performance of different priority queue implementations				
CO 3 CO 4	Implement Disjoint set data structure				
CO 4 CO 5	Analyse hashing techniques				
05	Implement tries and suffix trees				

Name of the Course	Machine learning lab
Course Code: PGCSPECL101A	Semester: 1 st
Duration: 6 month	Maximum Marks: 100
Teaching Scheme	Examination Scheme, Total Marks: 100
Theory Contact Hrs.: Nil	Attendance : 10
Tutorial Contact Hrs.: Nil	Preparation of Lab Report : 30
Practical : 3 hrs./week	Experimental data/ Precision of work done: 30
Credit Points: 1.5	Presentation/ analysis of the result : 10
	Viva Voce: 20

Detailed Syllabus							
Module	Content	Hrs	Marks				
1	Implement K-nearest neighbours classification using python.						
2	2 Implement linear regression using python.						
3	Implement Naive Bayes theorem to classify the English text using python	6					
4	Implement K-means clustering using python.	3					
5 Write a program to demonstrate the working of decision tree. 3							
6.	Implement K-nearest neighbours classification using python.	3					
7.	7.Implement linear regression using python.3						
8.	8. Implement Naive Bayes theorem to classify the English text using python 6						
Course out	comes						
After comp	letion of the course, a student would be able to:						
CO 1	Design and implement machine learning solutions to classification, regression prob	olems.					
CO 2	Apply appropriate data sets to the Machine Learning algorithms						
CO 3	Identify and apply Machine Learning algorithms to solve real world problems						
CO 4	Apply supervised and unsupervised techniques on various data sets.						
CO 5	Evaluate the machine learning models pre-processed through various feature en	gineering al	lgorithms				
	by python programming						
CO6	Analyze the complexity of Machine Learning algorithms and their limitations						

Name of t	the Course	Data Science lab				
Course C	ode: PGCSPECL101B	Semester: 1 st				
Duration :	: 6 month	Maximum Marks: 100				
Teaching	Scheme	Examination Scheme, Total Marks: 100				
Theory C	ontact Hrs.: Nil	Attendance : 10				
Tutorial (Contact Hrs.: Nil	Preparation of Lab Report : 30				
Practical	: 3 hrs./week	Experimental data/ Precision of work done : 3	0			
Credit Po	ints: 1.5	Presentation/ analysis of the result : 10				
	Viva Voce: 20					
Detailed S	Syllabus					
Module	Content		Hrs	Marks		
1	Introduction to Python – Keyword operations.	ls, identifiers, I/O statements., Sequence and File	6			
2	· · · · · · · · · · · · · · · · · · ·	and exceptions and Data Manipulation- Basic nation of data objects, Exploring a Dataset and	3			
3	Data visualization – Graphical statistical analysis – evaluation, plo	and diagrammatical presentation, Descriptive tting and interpretation	3			
4	Evaluation of probability using vari		3			
5	Correlation - Simple, Partial and M	Iultiple Correlations for linear and nonlinear data	3			
6.	Regression – Simple, Multiple Regr	ression and linear models	3			
7.	Test for normality and homogen- through multiple samples	eity of variance-Inferential Statistics for Single	3			
8.	Experimental Design: One way A tests	NOVA- two-way ANOVA- Multiple comparison	3			
9.	Time series analysis – White noise,	AR, MA, ARMA, ARIMA, ACF and PACF.	3			
Course ou	ıtcomes					
	pletion of the course, a student would					
CO 1	At the end of the course studer moderate complexity and execute	nts will be able to: develop relevant programm in data science.	ing tecl	hniques of		
CO 2	Demonstrate the proficiency in s contextually.	tatistical data analysis of inferential methods and in	nterpret	the results		
CO 3		methods to solve problems in real-world contexts.				
CO 4	Integrate data from disparate sour	rces and transform in relational databases.				

	2 nd SEM							
	THEORY							
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRS./WEEK	CREDIT	
01	PGCSPC203	Deep Learning	3	0	0	3	3	
02	PGCSPC204	Advanced Algorithm	3	0	0	3	3	
03	PGCSAUD202	Constitution of India (Audit Paper)	3	0	0	3	0	
04	PGCSOEC201	A. Soft ComputingB. Information Security	3	0	0	3	3	
05	PGCSOEC202	A. Advanced Software EngineeringB. Big Data Analytics	3	0	0	3	3	
	•	SESSIONAL / PRACTICA	Ĺ					
01	PGCSPCL202	Deep Learning Lab	0	0	3	3	1.5	
02	PGCSPCL203	Advanced algorithm Lab	0	0	3	3	1.5	
03	PGCSASGN201	Seminar	0	0	6	6	3	
		Total	15	0	12	27	18	

L – Lecture (total lecture 36), T – tutorial, P – practical

Name of t	he Course	Deep Learning			
Course Co	ode: PGCSPC203	Semester: 2 nd			
Duration:	6 month	Maximum Marks: 100			
Teaching	Scheme	Examination Scheme			
Theory Co	ontact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks			
Tutorial (Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks			
Practical :	: 0 hrs./week	Other Assessment tools (Assignment, Quiz etc.): 20 M	Iarks		
Credit Poi	ints: 3	End Semester Exam:75 Marks (To be mapped into 50	marks)		
Objective	:				
1.	Understand the concepts of Tens	or Flow, Keras, its main functions, operations and executi	on.		
2.	Implement deep learning algorith	ums, understand neural networks and traverse the layers of	f data		
	abstraction which will empower	the student to understand data more precisely.			
3.	Build deep learning models in Te	ensor Flow and interpret the results.			
4.	Learn topics such as Convolution	nal neural networks, recurrent neural networks, LSTM, GI	RU, trai	ning	
	deep networks and high-level int	erfaces.		-	
5.	Understand the Auto encoders, C	GAN and Reinforcement learning concepts.			
Pre-Requi					
1.	Machine learning				
Detailed S	Syllabus				
Module	Content		Hrs	Marks	
1	Artificial Neural Networks (AN	Ns), Perceptron, Multi-Layer Perceptron (MLP), Back	10		
	propagation, Hyper-parameter se	election, Activation functions.			
2	Training Deep Neural Networks	s, Vanishing Gradients Problems, Batch Normalization,	6		
	U	op, Adam Optimization, Regularization.			
3		(CNNs), Convolutional Layers, Filters, Pooling	6		
	strategies, CNN Architectures, R	• • • •			
4		Ns), Recurrent Neurons, Training RNNs, LSTM, GRU.	5		
5	Auto encoders and Generative A		4		
6	Reinforcement Learning, Introdu	ction to Open AI Gym, Markov Decision Processes, Q-	5		
	Learning.				
Course ou	itcomes				
After com	pletion of the course, a student wo	uld be able to:			
CO 1	Describe the concepts of Tenso	or Flow, Keras, its main functions, operations and execution	on.		
CO 2	Explain deep learning algorithm	ns and neural networks.			
CO 3	Develop models of convolution	al neural networks (CNN), recurrent neural networks (RN	IN), LS'	ТМ,	
	GRU, training deep networks a	nd high-level interfaces.			
CO 4	Apply Deep Learning Models t	o realise the concepts of Auto encoders and GAN.			
CO 5	Design Deep Learning algorithms for Reinforcement learning.				
	Resources:				
1.	Christopher Bishop. Pattern Re	cognition and Machine Learning. 2e			
2.	Machine Learning by Tom Mite	chell, McGraw Hill Education			
3.		Pattern Recognition: An Introduction, Universities Press,	Hydera	ıbad.	
4.		G. Stork, Pattern Classification, Wiley, 2000.			
5.		d Courville, A., Deep Learning, MIT Press, 2016			
6.	Christopher Bishop, Pattern Re	cognition and Machine Learning. 2e			

Name of th	e Course	Advanced Algorithm
Course Co	de: PGCSPC204	Semester: 2 nd
Duration: (6 month	Maximum Marks: 100
Teaching S	Scheme	Examination Scheme
Theory Co	ntact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks
Tutorial Co	ontact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks
Practical :	0 hrs./week	Other Assessment tools (Assignment, Quiz etc.): 20 Marks
Credit Poir	nts: 3	End Semester Exam:75 Marks (To be mapped into 50 marks)
Objective:		
1. To understand the concept of random		mized algorithms and NP completeness
2.	To implement graph theory algorith	ms

3.	To able to use parametric algorithms in real life practical problems.					
4.	To understand the concept of approximate algorithms					
Pre-Requ						
1. 1.	Algorithm					
Detailed S						
Module	Content	Hrs	Marks			
1	Amortized Analysis	3				
2	NP Completeness: The Class P, Examples of problems in P, The Class NP, Examples	5				
	of problems in NP, P versus NP, , Polynomial time reducibility, NP-completeness, The					
	Cook–Levin Theorem.					
3	Network Flows, Ford-Fulkerson Algorithm, Edmond-Karp Algorithm .Max-Flow Min-	12				
	Cut Theorem, Bipartite Matching, stable matching					
4	Probabilistic Analysis and Randomized algorithms, The hiring Problem, Indicator	8				
	random variables, Randomized algorithms.					
5	Approximate Algorithms, The vertex cover problem, The Travelling Salesman	8				
	Problem, The set covering Problem,					
Course ou						
	pletion of the course, a student would be able to:					
CO 1	Analyze Randomized algorithms for a given problem.					
CO 2	Analyze problems to decide NP completeness					
CO 3	Apply graph algorithms to real life problems					
CO 4	Apply Amortized analysis to various algorithms					
CO 5	Design approximate algorithms for problems.					
Learning	Resources:					
1.	"Introduction to Algorithms, 3rd edition", T.H.Cormen, C.E. Leiserson, R.L.Rivest and		, PHI			
2.	Randomized •algorithms, Rajeev Motwani, PrabhakarRaghavan, Cambridge University	Press				
3.	Skiena, Steven S. The algorithm design manual. Vol. 2. New York: springer, 1998.					
4.	Approximation Algorithms, Vazirani, Vijay V, 2003, Springer.					

Name of	the Course	Constitution of India				
Course C	ode: PGCSAUD202	Semester: 2 nd				
Duration	: 6 month	Maximum Marks: 100				
Teaching	Scheme	Examination Scheme				
Theory C	Theory Contact Hrs.: 3 hrs./week Mid Semester 1 Exam: 15 Marks					
Tutorial	Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks				
Practical	Practical : 0 hrs./weekOther Assessment tools (Assignment, Quiz etc.): 20 Ma					
Credit Po		End Semester Exam:75 Marks (To be mapped into 50 n	narks)			
Objective						
1.	*	Independent sovereign republic.				
2.		ialty and Proposal of Indian Constitution.				
3.		n with an equal level of self government for all the constitu				
4.		e union government and governments of the constituent p	oarts are	e derived		
	from the people.					
5.		Indian Jurisdiction and conceptualization of social refor	rms tha	t lead to		
	revolution in India.					
Pre-Requ						
1.	Constitution of India					
Detailed						
Module	Content		Hrs	Marks		
1	•	ndian Constitution: Sources and constitutional history,	3			
	e ·	es: Citizenship, Preamble and Proposal of Indian				
-	Constitution.					
2		Rights Duties: Fundamental Rights, Right On:	4			
	1 5	ploitation, Freedom of Religion, Cultural and Educational				
		ies. Directive Principles of State Policy. Fundamental				
2	Duties.	ministration. Standard of the Indian Union. Enderalism	6			
3	8	ministration: Structure of the Indian Union: Federalism,	6			
		esident: Role, power and position, PM and Council of l Secretariat, LokSabha, Rajya Sabha. State government				
		pr: Role and Position, CM and Council of ministers, State				
	Secretariat: Organization, Struc					
	Beeretariat. Organization, Struc					

4	Local Administration: District's Administration: Role and Importance, Municipalities:	3				
	Introduction, Mayor and role of Elected Representative. Block level: Organizational					
	Hierarchy (Different departments). Panchayati raj: Introduction, Importance and role.					
5	Election Commission: Election Commission: Role and Functioning. Chief Election	3				
	Commissioner and Election Commissioners. State Election Commission: Role and					
	Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.					
6	Jurisdiction: Supreme court: Organization of supreme court, procedure, jurisdiction and	5				
	power of the supreme court. High court: Organization of high court, procedure,					
	jurisdiction and power of high court. Subordinate courts: constitutional provision,					
	structure and jurisdiction. National legal services authority, gram nyayalays. Public					
	interest litigation (PIL): meaning of PIL, features, scope, principle, guidelines for					
	admitting PIL.					
Course o						
After con	npletion of the course, a student would be able to:					
CO 1	Have general knowledge and legal literacy about Indian Constitution and thereby it helps to take up					
	competitive examinations & to manage/face complex societal issues in society.					
CO 2	Explain about different features of Indian constitution. Fundamental Rights & their dutie					
CO 3	Identify the power and functioning of Union, state and local self-government. Understand state and					
	central policies (Union and State Executive).					
CO 4	Understand Electoral Process and special provisions in Constitution. Explain about	•				
	function of Indian Judiciary. Using the basics of PIL and guideline for admission of PI	L along	g with the			
	functioning of local administration starting from block to municipal Corporation.					
CO 5	Applying the authority to redress a problem in the profession and in the society.		strate the			
	intellectual origins of the framework of argument that informed the conceptualization of social					
	Resources:					
1.	Indian polity, M, Laxmikanth, MC Graw Hill education, 5th Edition.					
2.	Indian Constitution, M P Jain,8 th Edition.					
3.	Indian Constitution and Administration, LatikaShekhar.					
4.	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.					
5.	Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.					
6.	Durga Das Basu (DD Basu): "Introduction to the Constitution on India", (Students Edi	tion.) I	Prentice –			
	Hall EEE, 19th / 20th Edn., (Latest Edition) or 2008.					
7.	Shubham Singles, Charles E. Haries, and Et al : "Constitution of India and Professi	onal E	thics" by			
	Cengage Learning India Private Limited, Latest Edition – 2018.					
8.	M.V. Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.					
9.	Latest Publications of NHRC - Indian Institute of Human Rights, New Delhi.					

Name of	the Course	Soft Computing		
Course C	Code: PGCSOEC201A	Semester: 2 nd		
Duration	a: 6 month	Maximum Marks: 100		
Teaching	g Scheme	Examination Scheme		
Theory C	Contact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks		
Tutorial	Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks		
Practical	: 0 hrs./week	Other Assessment tools (Assignment, Quiz etc.): 20 Marks		
Credit Po	oints: 3	End Semester Exam:75 Marks (To be mapped into 50 marks)		
Objective	e:			
1.	To understand basic soft comp	uting techniques		
2.	To learn how to use soft compu	iting technique for a particular problem		
3.	To implement hybrid soft comp	puting techniques		
Pre-Requ	uisite			
1.	Discrete Mathematics			
2.	Design and Analysis of Algorit	hm		
Detailed	Syllabus			
Module	Content		Hrs	Marks
1		omputing systems, Characteristics of Soft computing, some	4	
		ting techniques, Different learning methods: Supervised,		
	x	Simple Clustering algorithm, k-means & k-medoid based		
	algorithm.			
2		Basic concept of neural networks, Mathematical model, Typical	8	
	.	tilayer, Common activation functions; basic models, Perceptron,		
	2	k, Back propagation, ADALINE, MADALINE, Different issues		
	regarding convergence of Mult	ilayer Perceptron, Self-Organizing Feature Maps.		

		<u> </u>	1	
3	Fuzzy Logic: Fuzzy Sets, Basic Definitions and Terminology, membership function, Set-			
	theoretic operation. Fuzzy union, intersection and complement, various T-norm and T-conorm			
	operators, Fuzzy Relations. Fuzzy Logic, Approximate Reasoning, Compositional Rule of			
	Inference.			
4	Evolutionary Algorithms: Genetic Algorithms: Simple GA, Encoding Techniques, Crossover,			
	mutation, inversion and deletion, Multi-objective Genetic Algorithm (MOGA). Applications of			
	Genetic Algorithm: genetic algorithms in search and optimization, GA based clustering			
	Algorithm. Other Soft Computing techniques: Simulated Annealing, Tabu search, Ant colony			
	optimization (ACO), Particle Swarm Optimization (PSO).			
5	Hybrid Soft Computing Techniques:	7		
	Neuro-fuzzy hybrid algorithm, genetic neuro hybrid algorithm, fuzzy-genetic hybrid algorithm,			
	genetic-fuzzy hybrid algorithm, GA-PSO hybrid algorithm.			
Course o	outcomes			
After con	npletion of the course, a student would be able to:			
CO 1	Understand the concept of soft computing			
CO 2	Explain fuzzy sets and represent these sets by membership functions			
CO 3	Compare the relation between real brains and simple artificial neural network models			
CO 4	Analyze Evolutionary algorithms for single and multiple objective optimization problem			
CO 5	Design Neuro fuzzy and other hybrid approaches of soft computing techniques for problem solvi	ng		
Learning	g Resources:			
1.	"Neuro-Fuzzy and Soft computing", Jang, Sun, Mizutani, PHI			
2.	"Neural Networks: A Comprehensive Foundation", Simon Haykin, Prentice Hall.			
3.	"Genetic Algorithms in search, Optimization & Machine Learning", David E. Goldberg, Pearson	/PHI		
4.	"Fuzzy Sets and Fuzzy Logic: Theory and Applications", George J. Klir and Bo Yuan, Prentice H	Hall		
5.	S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI			
6.	Fuzzy logic with engineering applications, Timothy J. Ross, John Wiley and Sons.			
7.	D. Ruan, Intelligent Hybrid Systems, Kluwer Academic Publisher, 1997.			

Name of	the Course	Information Security			
Course C	ode: PGCSOEC201B	Semester: 2 nd			
Duration	: 6 month	Maximum Marks: 100			
Teaching	Scheme	Examination Scheme			
	ontact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks			
-	Tutorial Contact Hrs.: 0 hrs./weekMid Semester 2 Exam: 15 Marks				
	: 0 hrs./week	Other Assessment tools (Assignment, Quiz etc.): 20			
-	Credit Points: 3 End Semester Exam:75 Marks (To be mapped into 50 marks)			s)	
Objective					
1.		urity practices in the aspect of critical data transmission			
2.		tographic and data hiding solutions with their effectiven	ess		
3.	1 11	uthentication in the aspect of secret image sharing			
4.	· · · · ·	s for user authentication and sensitive data validation			
Pre-Requ					
1.	Computer Network				
Detailed	v v		1		
Module	Content		Hrs	Marks	
1	Introductory Concepts on Informa		6		
		ty models, major principles of security- authentication,			
		ation, access control and availability, classification of			
		and network-level attacks, malicious software based			
2	attacks, packet sniffing, packet spoof		10		
2	Symmetric Key Cryptographic Con	-	10		
		ey ranges and sizes, Diffie-Helman Key exchange			
		x, idea of cryptanalysis, cipher text formation with			
		ues, idea of stream & block cipher, symmetric key			
3	encryption algorithm- DES, double & triple DES, AES				
5	Asymmetric Key Cryptographic Concepts: Basic idea, comparison of both symmetric and asymmetric key cryptography, asymmetric				
		of digital signature with message digest or hashing,			
		ymmetric key encryption concept for secure data			
	transmission.	, is, energy ion concept for secure dura			
4	Data Hiding Concepts for Security		8		
		mbining cryptographic and stenographic concepts for			

	security, stenographic techniques- spatial and transform domain with their comparisons and examples, concept of watermarking and their classifications, idea of multi- watermarking, attacks related to watermarking, data hiding quality matrices- PSNR, MSE, Image Fidelity, CC etc.				
5	User Authentication Mechanism:	6			
5	password based authentication and its related issues, random challenge based authentication, certificate based authentication, idea of visual cryptography- share generation concept in visual cryptography, use of visual cryptographic concept with image	0			
	steganography for digital signature implementation				
Course ou					
-	bletion of the course, a student would be able to:				
CO 1	Understand the scope of information security in the context of various attacks				
CO 2	Use Symmetric Key cryptography for secret data communication				
CO 3	Explain the role of asymmetric key cryptography for secure and trusted data communication	n			
CO 4	Illustrate data hiding mechanism for authentication and secure data transmission				
CO 5	Outline some data security solutions in the context of both user and document validations				
Learning	Resources:				
1.	William Stallings, Cryptography and Network Security Principles and Practices, 5th Edition	, Prenti	ce Hall		
2.	C. Kaufman, R. Perlman and M. Speciner, Network Security: Private communication, 2nd Education	Editio	n, Pearson		
3.	Atul Kahate, Cryptography & Network Security, 3rd Edition, McGraw Hill Education Limited	(India) Private		
4.	Merike Kaeo, Designing Network Security, 2nd Edition, Pearson Books				
5.	Information Hiding: Steganography and Watermarking: attacks and countermeasures, Neil I	F. John	son, Zoran		
	Duric, Sushil Jajodia, Springer Science & Business Media, 2001				
6.	Digital Watermarking and Steganography: Fundamentals and Techniques, Frank Y. Shih, CRC Press, 2017	, Secon	d Edition,		

Name of the Course		Advanced Software Engineering		
Course Code: PGCSOEC202A		Semester: 2 nd		
Duration	6 month	Maximum Marks: 100		
Teaching		Examination Scheme		
Theory C	ontact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks		
Tutorial	Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks		
	: 0 hrs./week	Other Assessment tools (Assignment, Quiz etc.): 20 M		
Credit Po		End Semester Exam:75 Marks (To be mapped into 50	marks)	
Objective				
1.	To learn the different models for t	he development of a software product		
2.		nd testing to develop software product		
3.	To asses quality of software produ	ct to sustain in the market		
Pre-Requ				
1.	Fundamentals of Programming kno	wledge, C, C++ etc.		
	Detailed Syllabus			
Module	Content	Hrs	Marks	
1	Software Development Process Models: Waterfall, Spiral, Prototyping, RAI			
	Evolutionary, Software Requirem	ent and Feasibility Analysis, Cost- Benefit Analysis, etc.		
2	0 C	am, DFD, Data Dictionary, ER diagram, Decision Tree,	5	
		, Structured English, Top-Down and Bottom-Up design,		
	e	Relationship- Coupling, Cohesion, Functional vs. Object-		
	Oriented approach, Design for Mo			
3	0	signing with UML: Basic idea of Object Oriented	7	
		goals of UML, static, dynamic and functional aspects of		
		ams in UML- class, object and interface diagram, class		
	· · · · · · · · · · · · · · · · · · ·	licity of association, aggregation, brief idea of use case		
	diagram, sequence diagram, collaboration diagram, state chart and transition diagram,			
4	activity and deployment diagram,	6		
4		ibutes, Total Quality Management, Software Quality	6	
		Reliability, Reliability Models, SEI CMM and ISO 9001.		
5		Cechnique. Software reuse, Software Maintenance.	5	
5	8	ting Strategy, Unit Testing, Integration Testing, System	5	
	00 00	Testing, Basis Path Testing, Control Structure Testing, Validation, Cyclomatic Complexity.		
	Diack-box resuling, verification,	vandation, Cyclomatic Complexity.		

6	Software Project Management& Software Configuration Management: Software 8
	Project Management Concepts, Software Project Management Plan, Tools for Project
	Plan – WBS, PERT, GANTT, Project Scheduling & Monitoring, Staffing, Cost
	Estimation, COCOMO, Software Reengineering Process model, Software Configuration
	Management (SCM), SCM Repository.
Course ou	tcomes
After comp	pletion of the course, a student would be able to:
CO 1	Differentiate among different types of SDLC models.
CO 2	Assess the quality of software
CO 3	Examine various testing techniques
CO 4	Review the activity of software project management with CASE study
Learning	Resources:
1.	Software Engineering: A practitioner's approach-Pressman (TMH)
2.	Software Engineering: Pankaj Jalote (Wiley-India)
3.	Software Engineering: Rajib Mall (PHI)
4.	Software Engineering: Agarwal and Agarwal, (PHI)
5.	Software Engineering: Sommerville, Pearson
6.	Fundamentals of Software Engineering – C. Ghezzi, M. Jazayeri, D. Mandrioli
7.	Software Engineering Martin L. Shooman,- TMH

Name of	the Course	Big Data Analytics		
Course C	ode: PGCSOEC202B	Semester: 2 nd		
Duration	: 6 month	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory C	ontact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks		
Tutorial	Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks		
Practical	: 0 hrs./week	Other Assessment tools (Assignment, Quiz etc.): 20 Mar	ks	
Credit Po	ints: 3	End Semester Exam:75 Marks (To be mapped into 50 ma	urks)	
Objective	:			
1.	To study the basic technologies	s that forms the foundations of Big Data Analytics		
2.	Provide an overview of Apache	e Hadoop, HDFS Concepts and Interfacing with HDFS		
3.	To understand the specialized a	aspects of big data including big data application, and big dat	a analy	tics.
4.	Increasing operational efficient	cy by understanding where bottlenecks are and how to fix the	em.	
Pre-Requ	isite			
1.	Strong knowledge of DBMS			
2.	Good command over programm	ning languages		
3.	Basic Mathematics and Statisti	cs		
Detailed S	Syllabus			
Module	Content		Hrs	Marks
1	Introduction to Big Data:	History of big data, Elements of big data, why big data,	5	
	0	e and Analysis, Characteristics of Big Data, Using big data		
	in businesses, Challenges in Bi	g Data Analytics.		
2	Technologies for handling Bi	ig Data: History and overview of Hadoop, Functioning of	3	
	8	S, RDBMS versus Hadoop, Cloud Computing for big data,		
	Distributed computing challeng	ges, Analyzing Data with Hadoop, Hadoop Streaming, Use		
	case of Hadoop, Processing da	ta with Hadoop, Managing resources and applications with		
	Hadoop YARN (Yet another R	esource Negotiator).		
3	HDFS(Hadoop Distributed I	File System): Hadoop distributors, the Design of HDFS,	10	
		Line Interface, Apache Hadoop, Hadoop file system		
		gest with Flume and Scoop and Hadoop archives, Hadoop		
		n, Avro and File-Based Data structures).		
4	1 5	Image: Application of the second se	7	
_		luce Types and Formats, Map Reduce Features.	_	
5		roduction to Pig, Execution Modes of Pig, Comparison of	5	
	-	Pig Latin, User Defined Functions, Data Processing		
		II, Hive Services, Hive Metastore, Comparison with		
		L, Tables, Querying Data and User Defined Functions)		
	_	Clients, Example, Hbase Versus RDBMS) Big SQL		
	(Introduction), Interacting with			
6		usage of Spark and examples, how to use Spark and its	6	
	different components.			

7	Data Analytics with R: Machine Learning (Introduction, Supervised Learning,					
	Unsupervised Learning, Collaborative Filtering) Big Data Analytics with R, Integrating R					
	and Hadoop.					
Course out	comes					
After comp	letion of the course, a student would be able to:					
CO 1	Understand Big Data and its analytics in the real world					
CO 2	Analyze the Big Data framework like Hadoop and NOSQL to efficiently store and process Big Data to					
	generate analytics					
CO 3	Design of Algorithms to solve Data Intensive Problems using Map Reduce Paradigm					
CO 4	Design and Implementation of Big Data Analytics using pig and spark to solve data intensive problems					
	and to generate analytics					
CO 5	Implement Big Data Activities using Hive					
CO 6	Apply Machine Learning Techniques using R.					
Learning l						
1.	V.K. Jain, Big Data and Hadoop, Khanna Publishing House, New Delhi(2017).					
2.	V.K. Jain, Data Analysis, Khanna Publishing House, New Delhi (2019).					
3.	Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012.					
4.	Seema Acharya, Subhasini Chellappan, "Big Data Analytics" Wiley 2015.					
5.	Bahga, Arshdeep and Vijay Madisetti, Big data science & analytics: A hands-on approach,(1e),VPT,2016.					
6.	EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing,					
	Visualizing and Presenting Data,(1e),John Wiley & Sons, 2015.					
7.	Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.					
8.	Jay Liebowitz, "Big Data and Business Analytics" Auerbach Publications, CRC press (2013)					
9.	Tom Plunkett, Mark Hornick, "Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle					
	R Enterprise and Oracle R Connector for Hadoop", McGraw-Hill/Osborne Media (2013), Oracle press.					
10.	Glen J. Myat, "Making Sense of Data", John Wiley & Sons, 2007					
11.	Pete Warden, "Big Data Glossary", O'Reily, 2011.					
12.	Michael Mineli, Michele Chambers, Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business					
	Intelligence and Analytic Trends for Today's Businesses", Wiley Publications, 2013.					
13.	Arvind Sathi, "Big Data Analytics: Disruptive Technologies for Changing the Game", MC Press, 2012					

Name of the Course		Deep learning lab					
Course Code: PGCSPCL202		Semester: 2 nd					
Duration:	6 month	Maximum Marks: 100					
Teaching	Scheme	Examination Scheme, Total Marks: 100					
Theory Co	ontact Hrs.: Nil	Attendance : 10					
Tutorial (Contact Hrs.: Nil	Preparation of Lab Report : 30					
Practical	: 3 hrs./week	Experimental data/ Precision of work done : 30	1				
Credit Poi	ints: 1.5	Presentation/ analysis of the result : 10					
		Viva Voce: 20					
Detailed S	Syllabus						
Module	Content		Hrs	Marks			
1	Implementing Feedfor	ward neural networks with Keras and Tensor Flow.	3				
2	Building Image classi	ication model with CNN architectures	6				
3	Object detection using	Transfer Learning of CNN architectures	6				
4	Using Auto encoder to	implement anomaly detection.	3				
5	Regression using Deep	Neural network.	6				
6.	Classification using D	eep neural network.	6				
Course ou	itcomes			<u>.</u>			
After com	pletion of the course, a stud	ent would be able to:					
CO 1	Learn the Fundamental I	Learn the Fundamental Principles of Deep Learning.					
CO 2	Identify the Deep Learning Algorithms for Various Types of Learning Tasks in various domains.						
CO 3	Implement Deep Learning Algorithms and Solve Real-world problems.						
CO 4	Understand the basic co	Understand the basic concepts of deep neural network model and design the same.					
CO 5	Apply basic data pre-pro	cessing and tuning techniques. (Cognitive Knowledge Le	evel				

Name of	the Course	Advanced Algorithm lab						
Course Code: PGCSPCL203		Semester: 2 nd						
Duration	: 6 month	Maximum Marks: 100						
Teaching	Scheme	Examination Scheme, Total Marks: 100						
Theory C	ontact Hrs.: Nil	Attendance : 10						
Tutorial	Contact Hrs.: Nil	Preparation of Lab Report : 30						
Practical	: 3 hrs./week	Experimental data/ Precision of work done : 30						
Credit Po	ints: 1.5	Presentation/ analysis of the result : 10						
		Viva Voce: 20						
Detailed S	Syllabus		1					
Module	Content		Hrs 3	Marks				
1	Implement median order statistics using random partition function and compare the performance with classical partition function.							
2	Execute randomized quick sort	t and compare performance with fixed pivot quicksort.	3					
3	Implement network flow algor	ithms	3					
4	Implement matching algorithm	18	3					
5	Design approximate algorithm	s for problems	3					
6.	Use reduction to solve unknow	n problems using algorithms for known problems	3					
Course of	utcomes							
After com	pletion of the course, a student v	vould be able to:						
CO 1		Implement randomized algorithms						
CO 2	Analyze network flow algorithms	Analyze network flow algorithms						
CO 3	Implement Matching algorithms							
CO 4	Apply reductions to solve pro	Apply reductions to solve problems						
CO 5	Design Approximate algorith	ms for problems						

	3rd SEM						
		THEORY					
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRS./WEEK	CREDIT
01	PGCSPEC303	A. RoboticsB. Natural Language ProcessingC. Internet of Things	3	0	0	3	3
		SESSIONAL / PRACTICAL					
01	PGCSPRJ301	Dissertation-I	0	0	26	26	13
		Total	3	0	26	29	16

L – Lecture (total lecture 36), T – tutorial, P – practical

Name of t	he Course	Robotics		
	ode: PGCSPEC303A	Semester: 3 rd		
Duration		Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory C	ontact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks		
	Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks		
Practical	: 0 hrs./week	Other Assessment tools (Assignment, Quiz etc.): 20 Ma	arks	
Credit Po	ints: 3	End Semester Exam:75 Marks (To be mapped into 50 n	narks)	
Objective	:			
1.	Building the fundamentals of Rol	botics		
2.	Imparting design thinking capabi	lity to build Robot		
3.	For modelling create a useful mat	thematical representation of a physical system		
4.	Gaining practical experience in p	rogramming tools and techniques used in Robotics for Rob	otics	
5.		nowledge of different tools used in robotics		
6.		ne system follow a given trajectory and react to unexpected	l obstac	cles.
Pre-Requ				
1.	Basic Mathematics and knowledge	ge of Programming		
Detailed S	Syllabus			
Module	Content		Hrs	Marks
1	ROBOT BASICS		5	
	Basic concepts, Need, Law, H	istory, Anatomy, specifications. Robot configurations:		
	Cartesian, cylinder, polar and art	ticulate. Robot wrist mechanism, Precision and accuracy		
	of robot.			
2	ROBOT ELEMENTS		7	
		bes of Mechanical (Hydraulic and Pneumatic) actuation,		
		ign, Robot drive system Types, Position and velocity		
	feedback devices, Robot joints an			
3	ROBOT KINEMATICS AND		7	
		ect and inverse kinematics, Robot trajectories, 2D and 3D		
	e.	n, Translation Homogeneous transformation. Control of		
4		nt, Continuous Path Control, Robot programming	6	
4	SYSTEM MODELLING AND	ag, application of Laplace Transform, Block diagrams,	6	
	•	cond order system, analysis of stability of a system,		
	introduction to controllers	cond order system, analysis of stability of a system,		
5	ROBOT SENSORS		6	
		ors-Tactile sensor, Proximity and range sensors. Force		
		sensors, Introduction to Machine Vision and Artificial		
	Intelligence.	,		
6	ROBOT APPLICATIONS		5	
		Medical, Household, Entertainment, Space, Underwater,		
		Applications, Micro and Nan robots, Future Applications		
Course ou	· · · · · · · · · · · · · · · · · · ·			
After com	pletion of the course, a student wo	uld be able to:		
CO 1	Explain the basic elements of inc	lustrial robots		
CO 2	Analyze robot kinematics and rol	botic control methods.		

CO 3	Develop the concept of system modelling and stability.
CO 4	Classify the various sensors used in robots.
CO 5	Summarize various industrial and non-industrial applications of robots
Learning	Resources:
1.	Mikell P. Groover, Mitchell Weiss, Roger N Nagel, Nicholas G Odrey, "Industrial Robotics Technology,
	Programming and Applications", Tata – McGraw Hill Pub. Co., 2008.
2.	Deb. S.R and Sankha Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill
	Publishing Company Limited, 2010.
3.	Klafter. R.D, Chmielewski. T.A, and Noggin's., "Robot Engineering: An Integrated Approach", Prentice
	Hall of India Pvt. Ltd., 1994.
4.	Fu. K.S, Gonzalez. R.C & Lee. C.S.G, "Robotics control, sensing, vision and intelligence", Tata- McGraw
	Hill Pub. Co., 2008.
5.	Yu. "Industrial Robotics", MIR Publishers Moscow, 1985.
6.	Peter Corke, Robotics, Vision and Control, Springer, 2011
7.	Kelly, A, Mobile Robotics: Mathematics, Models, and Methods, Cambridge
8.	Roland Siegwart, Illah R. Nourbakhsh and Davide Scaramuzza, Introduction to Autonomous Mobile
	Robots, Second Edition, MIT Press 2011

Name of t	the Course	Natural language processing		
Course C	ode: PGCSPEC303B	Semester: 3 rd		
Duration	: 6 month	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory C	ontact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks		
Tutorial	Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks		
Practical	: 0 hrs./week	Other Assessment tools (Assignment, Quiz etc.): 20 Mar	ks	
Credit Po		End Semester Exam:75 Marks (To be mapped into 50 ma	ırks)	
Objective				
1.		characteristics of natural languages and the phases in NLP.		
2.		presentation of texts in a computer, and the standards.		
3.		formed in a natural language, and how to analyse words for		
4.		f words or groups of words in a sentence have to be determine	ied so as	s to
	recognise the syntactic struct	ures of sentences.		
Pre-Requ				
1.	Machine Learning			
2.	Python			
Detailed S			n	
Module	Content		Hrs	Marks
1	Overview of Natural Lang	nage Processing: Text Analytics and NLP; Different NLP	5	
		gging; Stop Word Removal; Text Normalization; Spelling		
		temming; Named Entity Recognition (NER);		
		Sentence Boundary Detection.		
2		Extraction: Data Categorization, Text Cleaning and	6	
		grams, Tokenizing Text, Regexp Stemmer, The Porter		
		zers Lemmatization, Singularization and Pluralization of		
	00	on, Removal of Stop Words from Text, Bag of Words		
		Words, Zipf's Law, Feature Extraction from Texts. Other		
		ency-Inverse Document Frequency (TF-IDF), Feature		
3	<u> </u>	ependency Parse Trees and Named Entities.	5	
5	8	Text: Building a Text Classifier, Extracting Features, hating Correlated .Features, Eliminating Highly Correlated	5	
	U U	the RMSE and MAPE of a Dataset, assessing a Model's		
		Dut Dimensionality Reduction Using Principal Component		
	Analysis.	our Dimensionanty reduction Using Ennerpar Component		
4		exploration, converting unstructured to organized data,	5	
		ling, The Operation of Latent Semantic Analysis (LSA)		
	č	lysis to Examine Wikipedia World Cup Articles Latent		
		An Overview of Its Operation, Dirichlet Process and		
	Distribution Using the LDA	*		
5		tion, and Vector representation: Vector, Document Vectors,	5	
		Converting News Headlines to Document Vectors, Finding		
		Document Vectors, Generating Text using Markov Chains,		
	Text Summarization.			
	•		•	•

6	Large Language Models (LLM), Concepts behind LLMs, Transformers: Transformer5architecture, the encoder and the decoder, Computing the output of the self-attention1layer, Embedding layers in the Transformer, Residuals and normalization. ChatGPT and1						
	Google BARD, GPT Models						
Course ou	tcomes						
After comp	letion of the course, a student would be able to:						
CO 1	Describe the concepts of Natural Language Processing.						
CO 2	Demonstrate understanding of Approaches for Feature Extraction.						
CO 3	Create a Classifier for Text						
CO 4	Develop systems for Using APIs and Web Scraping to Gather Text Data.						
CO 5	Describe Topic Modelling						
Learning	Resources:						
1.	Daniel Jurafsky and James H Martin. Speech and Language Processing, 2e, Pearson Education, 2009						
2.	Siddiqui T., Tiwary U. S Natural language processing and Information retrieval, OUP, 2008						

Name of t	he Course	Internet of Things						
Course Code: PGCSPEC303C		Semester: 3 rd						
Duration		Maximum Marks: 100						
Teaching		Examination Scheme						
	ontact Hrs.: 3 hrs./week	Mid Semester 1 Exam: 15 Marks						
	Contact Hrs.: 0 hrs./week	Mid Semester 2 Exam: 15 Marks						
Practical : 0 hrs./weekOther Assessment tools (Assignment, Quiz etc.): 20 Ma								
Credit Po		End Semester Exam:75 Marks (To be mapped into 50 n	narks)					
Objective								
1.	To understand the application areas of IOT.							
2.	To realize the revolution of Internet in Mobile Devices, Cloud & Sensor Networks.							
3.	0	f Internet of Things and characteristics.						
Pre-Requ								
1.	Computer Networks							
Detailed S Module			IIma	Maulta				
	Content		Hrs	Marks				
1	Introduction:		9					
		T Impact, Convergence of IT and oT, IoT Challenges, IoT						
		ign, Physical design of IoT, Logical design of IoT, A						
2	simplified IoT Architecture.							
Z	Major components of IoT:	urces of IoT, M2M Communication, M2M Architecture,	8					
	U	IoT, Data and Analytics for IoT, An Introduction to Data						
		ning, Big Data Analytics Tools and Technology.						
3	Smart Objects: The "Things"	6						
5	•	Objects, Sensor Networks, Connecting Smart objects,	U					
		Introduction to Arduino Uno, and Raspberry PI, Features						
	and application of arduino uno.	,						
4	Securing Internet of Things :		8					
	Security Requirements in IoT	Architecture - Security Concerns in IoT Applications.						
	Cryptographic primitives and its	role in Digital Signatures and light weight cryptography,						
	Cryptographic controls built into	o IoT messaging and communication protocols.						
5	Recent trends in smart sensor		5					
		IoT based home automation with security features, Smart						
		smart agriculture, IoT application to improvise industrial						
-	automation, – Smart Healthcare	systems etc.						
Course ou								
	pletion of the course, a student wo							
CO 1	Explain general concepts of In							
CO 2	Construct various M2M and Io							
CO 3		art objects and the technologies to connect them to network						
CO 4		d methodologies using Cryptography for Internet of Things						
CO 5	Design different real world app	Discations.						
U	Resources:	in Details Connected D 1 (D () T T T T T T		, 1				
1.		iro, Patrick Grossetete, Robert Barton, Jerome Henry,"IoT	Funda	amentals:				
	Inetworking Technologies, Prot	tocols, and Use Cases for the Internet of Things".						

2.	Srinivasa K G, "Internet of Things", CENGAGE Leaning India, 2017.
3.	Yasuura, H., Kyung, CM., Liu, Y., Lin, YL., Smart Sensors at the IoT Frontier, Springer International
	Publishing.
4.	Jeeva Jose, Internet of Things, Khanna Publishing House
5.	Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)", 1stEdition, VPT,
	2014. (ISBN: 978-8173719547)
6.	Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill

4 Th SEM									
SL. NO.	PAPER CODE	PAPER NAME	L	Т	Р	CONTACT HRS./WEEK	CREDIT		
SESSIONAL / PRACTICAL									
01	PGCSPRJ402	Dissertation-II	0	0	32	32	16		
02	PGCSASGN402	Comprehensive Viva-Voce	0	0	0	0	2		
		Total	0	0	32	32	18		