Curriculum for B.Tech. in Information Technology

(Applicable from the academic session 2018-2019)

Department of Information Technology

Government College of Engineering & Ceramic Technology
(An Autonomous Institution under MAKUT)
73, A.C Banerjee Lane
Kolkata-700010

Definition of Credit:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credits

MOOCs for B. Tech Honours:

Additional 20 credits are to be acquired through MOOCs for obtaining **B. Tech. with Honours.** Guidelines for completing MOOCs (Courses of 8-12 weeks' duration): -

In 1st year: 8 credits In 2nd year: 4 credits In 3rd year: 4 credits In 4th year: 4 credits

In the first year of study, students have to earn a total of 8 credit points, taking ONE course from Science and Engineering Group and ONE course from Humanities Group.

For the subsequent three years of study, students have to earn a total of 12 credit points by successfully completing one course in each year of study.

COURSE STRUCTURE

	1 st SEMESTER										
	Mandatory Induction Program- 3 Weeks duration										
SL.	TYPE OF	COURSE	COURSE TITLE	но	U RS PER W	VEEK	Credit				
NO.	COURSE	CODE	COURSE TITLE	Lecture Tutorial		Practical	Credit				
THE	CORY										
01	Basic Science course	BS(CS/IT) 101	Mathematics – I	3	0	0	3				
02	Basic Science course	BS(CS/IT) 102	Physics	3	1	0	4				
03	Engineering Science Course	ES(CS/IT) 101	Basic Electrical Engineering	3	1	0	4				
SES	SIONAL/PRAC	ΓICAL									
01	Basic Science course	BSL(CS/IT) 103	Physics Laboratory	0	0	3	1.5				
02	Engineering Science Course	ESL(CS/IT) 102	Basic Electrical Engineering Laboratory	0	0	2	1				
03	Engineering Science Course	ESL(CS/IT) 103	Engineering Graphics & Design	1	0	4	3				
04		CLA(IT)-1	Comprehensive Laboratory Assessment	-	-	-	1				
тот	TAL			10	2	9	17.5				
			2 nd SEMESTER	₹							
SL.	TYPE OF	COURSE	COATDOD WATER D	но	U RS PER W	VEEK	G 114				
NO.	COURSE	CODE	COURSE TITLE	Lecture	Tutorial	Practical	Credit				
THE	CORY										
01	Basic Science course	BS(CS/IT) 204	Chemistry	3	0	0	3				
02	Basic Science course	BS(CS/IT) 205	Mathematics – II	3	1	0	4				
03	Engineering Science Course	ES(CS/IT) 204	Programming for Problem solving	3	0	0	3				
04	Humanities & Social	HS(CT/IT/ CS)201	English	2	0	0	2				

	Sciences including Management									
SESS	SIONAL/PRACT	TCAL								
01	Basic Science course	BSL(CS/IT) 206	Chemistry Laboratory		0		0	3		1.5
02	Engineering Science Course	ESL(CS/IT) 205	Programming Problem solvin Laboratory		0		0	4		2
03	Engineering Science Course	ESL(CS/IT) 206	Workshop /Manufacturin Practices	g	1		0	4		3
04	Humanities & Social Sciences including Management	HS(CT/IT/C S)202	Language Lab).	0		0	2		1
05		CLA(IT)-2	Comprehensiv Laboratory Assessment	ve	-		-	-		1
тот	AL				12		1 13			20.5
			3 rd SEMES	STER						
SL. NO.	PAPER CODE	PAPER NA	AME	L	Т	P	CONT HRs./V		CF	REDIT
THE	ORY									
01	BS(CS/IT)307	Mathematic	es- III	3	0	0	3		3	
02	ES(CS/IT)307	Digital Elec	etronics	3	0	0	3		3	
03	PC(CS/IT)301	Computer (Organization	3	1	0	4		4	
04	PC(CS/IT)302	Data structu Algorithms		3	0	0	3		3	
05	HS(CS/IT)303	Economics	for Engineers	3	0	0	3		3	
SESS	SIONAL/PRACT	TCAL		•			•		•	
01	ESL(CS/IT)308	Digital Elec	Digital Electronics Lab		0	3	3		1.5	
02	PCL(CS/IT)303	Computer (Organization	0	0	3	3		1.5	j
03	PCL(CS/IT)304	Data structu Algorithms		0	0	3	3		1.5	j

04	PCL(CS/IT)305	IT Workshop (python/matlab)	0	0	3	3	1.5
05	CLA(IT)-3	Comprehensive Laboratory Assessment	0	0	0	0	1
TOT	AL	, ,	15	1	12	28	23
		4 th SEME	STER				
SL. NO.	PAPER CODE	PAPER NAME	L	Т	P	CONTACT HRs./WEEK	CREDIT
THE	ORY		·				
01	BS(CS/IT)408	Discrete Mathematics	3	1	0	4	4
02	ES(CS/IT)409	Communication Engineering	3	0	0	3	3
03	PC(CS/IT)406	Design & Analysis of Algorithm	3	0	0	3	3
04	PC(CS/IT)407	Formal Language and Automata Theory	3	1	0	4	4
05	PC(CS/IT)408	Computer Architecture	3	1	0	4	4
SESS	SIONAL/PRACTI	CAL					
01	ESL(CS/IT)410	Communication Engineering Lab	0	0	3	3	1.5
02	PCL(CS/IT)409	Algorithm Lab	0	0	3	3	1.5
03	PCL(CS/IT)410	Programming Lab using C++	0	0	3	3	1.5
04	CLA(IT)-3	Comprehensive Laboratory Assessment	0	0	0	0	1
MAN	DATORY COUR	RSE					
01	MC(CS/IT)401	Environmental Sciences	2	0	0	2	0
TOT	AL		17	3	9	29	23.5
		5 th SEME	STER				
SL. NO.	PAPER CODE	PAPER NAME	L	Т	P	CONTACT HRs./WEEK	CREDIT
THE	ORY						
01	PC(CS/IT)511	Operating Systems	3	1	0	4	4
02	PC(CS/IT)512	Database Management System	3	1	0	4	4

03	PC(CS/IT)513	Object Oriented Programming	3	1	0	4	4				
04	PEC(IT)501	Elective-I	3	0	0	3	3				
05	MC(CS/IT)502	Constitution of India/ (Essence of Indian Traditional Knowledge)	2	0	0	2	0				
SESS	SIONAL/PRACTI	CAL		•							
01	PCL(CS/IT)514	Operating System Lab	0	0	3	3	1.5				
02	PCL(CS/IT)515	Database Management System Lab	0	0	3	3	1.5				
03	PCL(CS/IT)516	Programming Lab using Java	0	0	3	3	1.5				
03	CLA(IT)-5	Comprehensive Laboratory Assessment	0	0	0	0	1				
TOT	AL		14	3	9	26	20.5				
	6 th SEMESTER										
SL. NO.	PAPER CODE	PAPER NAME	L	Т	P	CONTACT HRs./WEEK	CREDIT				
THE	ORY										
01	PC(CS/IT)617	Computer Networks	3	1	0	4	4				
02	PC(CS/IT)618	Compiler Design	3	0	0	3	3				
03	PEC(IT)602	Elective-II	3	0	0	3	3				
04	OEC(IT/CS)601	Open Elective-I	3	0	0	3	3				
05	HS(CS/IT)604	Industrial Management (Organizational Behavior/ Finance & Accounting	3	0	0	3	3				
SESS	SIONAL/PRACTI	CAL									
01	PCL(CS/IT)619	Computer Network lab	0	0	3	3	1.5				
02	PROJ(IT)601	Project 1	0	0	6	6	3				
03	CLA(IT)-6	Comprehensive Laboratory Assessment	0	0	0	0	1				
TOT	AL		15	1	9	25	21.5				

	7 th SEMESTER										
SL. NO.	PAPER CODE	PAPER NAME	L	Т	P	CONTACT HRs./WEEK	CREDIT				
THE	ORY										
01	PEC(IT)703	Elective-III	3	0	0	3	3				
02	PEC(IT)704	Elective-IV	3	0	0	3	3				
03	OEC(IT/CS)702	Open Elective II	3	0	0	3	3				
SESS	SIONAL/PRACTIC	CAL	I	l	1	1					
01	PROJ(IT)702	Project 2	0	0	12	12	6				
02	PEC(IT)704 (A/B/C/D)L	Elective-IV Lab.	0	0	3	3	1.5				
03	INDTR(IT)701	Industrial Training	0	0	0	0	1				
04	CLA(IT)-7	Comprehensive Laboratory Assessment	0	0	0	0	1				
тот	AL		9	0	15	24	18.5				
		8 th SEMES	STEF	k							
SL. NO.	PAPER CODE	PAPER NAME	L	Т	P	CONTACT HRs./WEEK	CREDIT				
THE	ORY		•		•	•					
01	PEC(IT)805	Elective-V	3	0	0	3	3				
02	OEC(IT/CS)803	Open Elective-III	3	0	0	3	3				
SESS	SIONAL/PRACTIC	CAL	1	<u>I</u>	1	1	ı				
01	PROJ(IT)803	Project 3	0	0	16	16	8				
02	CVV(IT)802	Comprehensive Viva Voce	0	0	0	0	1				
TOT	AL		6	0	16	22	15				

List of Electives (Professional and Open)

5TH **SEMESTER**

PEC(IT)501

- A: Information Theory and Coding
- **B**: Computer Graphics
- C: Advanced Computer Architecture
- D: Computational Geometry

6TH SEMESTER

PEC(IT)602 OEC(IT/CS)601

A: Software Engineering

A: Optimization Techniques

B: Cryptography and Network Security

B: Digital Communication

C: Multimedia Systems C: Cyber Law and Security Policy

D: Wireless Communication D: Control System

7TH SEMESTER

 $\underline{PEC(IT)703} \qquad \underline{PEC(IT)704} \qquad \underline{OEC(IT/CS)702}$

A: Machine Learning
A: Web Technology
A: VLSI Design and Algorithm
B: Distributed Systems
B: Internetworking
C: Cloud Computing
C: Pattern Recognition
C: Management Information Sys.

D: Real Time Operating Sys. D: Natural Language Processing D: Big Data Analytics

E: Artificial Intelligence

8TH SEMESTER

PEC(IT)805 OEC(IT/CS)803

A: E-Commerce A: Image Processing

B: Data Mining
B: Software Project Management
C: Mobile Communication
C: Social Network Analysis
D: Internet of Things
D: Quantum Computing

E: Data Science E: Bioinformatics

B.	Tech.	(IT)	Curriculum,	2018-1	Ç

FIRST YEAR FIRST SEMESTER

	1 st SEMESTER									
	Mandatory Induction Program- 3 Weeks duration									
SL.	TYPE OF	COURSE	COURSE TITLE	HOURS	PER WEEK	ζ	Credit			
NO.	COURSE	CODE	COURSE TITLE	Lecture	Tutorial	Practical	Credit			
THE	CORY			•						
01	Basic Science course	BS(CS/IT) 101	Mathematics – I	3	0	0	3			
02	Basic Science course	BS(CS/IT) 102	Physics	3	1	0	4			
03	Engineering Science Course	ES(CS/IT) 101	Basic Electrical Engineering	3	1	0	4			
SESS	SIONAL/PRAC	ΓICAL								
01	Basic Science course	BSL(CS/IT) 103	Physics Laboratory	0	0	3	1.5			
02	Engineering Science Course	ESL(CS/IT) 102	Basic Electrical Engineering Laboratory	0	0	2	1			
03	Engineering Science Course	ESL(CS/IT) 103	Engineering Graphics & Design	1	0	4	3			
04		CLA(IT)-1	Comprehensive Laboratory Assessment	-	-	-	1			
ТОТ	ГОТАL			10	2	9	17.5			

The course teacher shall assess the students for Serial Nos. 1, 2, 3 under Sessional/Practical before commencement of Semester End Examination. A student has to secure at least 50% marks in Serial Nos. 1, 2, 3 under Sessional/Practical, failing which the student would be debarred from sitting in the Semester End Examination.

A student has to secure at least 50% marks in rest of the courses (Theory papers and CLA), failing which he/she would carry backlog(s).

Name of	the course	Mathematics-I			
Course Code: BS(CS/IT) 101 Semester: 1st		Semester: 1st			
Duration	: 6 months	Maximum Marks: 100			
Teaching	hing Scheme Examination Scheme				
	hrs/week	Two Mid Term Exams: 30 Marks			
Tutorial: NIL Assignments, Quiz etc.: 20 Marks					
Credit Po	ints: 3	Semester End Exam: 75 Marks (Two th	nird weigh	tage for	
0100111		final reckoning i.e., 50 marks)			
Objective	2:				
1.	To learn evaluation techniques of evolution	e, involute and can use concept of impro	per integi	als.	
2.	To explain the meaning of Mean value the				
	L'Hospital rule.				
3.	To learn different types of matrices, cond	cept of rank, methods of matrix inversio	n and thei	r	
4.	applications. To understand linear spaces, its basis and	d dimension with corresponding applica	tions in th	a field of	
4.	computer science.	dumension with corresponding applica	uons m ui	e neid of	
5.	To learn the concept of eigen values, eig	en vectors, diagonalisation of matrices f	or unders	tanding	
	engineering problems.	, 2		υ	
Pre-Requ	nisite:				
1.	10+2 Mathematics				
Module	Content		Hours	Marks.	
1	Module 1: Calculus(Integration):		8		
	Evolutes and Involutes; Evaluation of def	inite and Improper integrals; Beta and			
	Gamma functions and their properties; Ap	oplications of definite integrals to			
	evaluate surface areas and volumes of rev	volutions.			
2	Module 2: Calculus (Differentiation):		6		
	Rolle's Theorem, Mean value theorems, T	-			
	with remainders; Indeterminate forms and	L'Hospital's rule; Maxima and			
	minima.				
3	Module 3: Matrices:		7		
	Matrices, Vectors: addition and scalar mu				
	Linear systems of equations, linear Indepe				
	determinants, Cramer's Rule, inverse of a Gauss-Jordan elimination.	matrix by Gauss elimination and			
4	Module 4: Vector Spaces (I):		8		
4	Definition, linear dependence of vectors, l	Racic Dimancion: Linear	0		
	transformations (maps), Range and Kerne				
	Inverse of a linear transformation, Rank-N	- · · · · · · · · · · · · · · · · · · ·			
	maps, Matrix associated with a linear map				
5	Module 5: Vector Spaces (II):	•	7		
=-	Eigen values, Eigen vectors, Symmetric, S	Skew-symmetric, and Orthogonal			
	Matrices, Eigen bases. Diagonalisation; Ir	-			
	orthogonalization.	•			

Course	Outcome:
After con	mpletion of the course, a student would be able to-
CO 1	apply the concept and techniques of differential and integral calculus to determine curvature and
	evaluation of different types of improper integrals
CO 2	identify the domain of applications of mean value theorems to engineering problems
CO 3	analyze different types of matrices, concept of rank, methods of matrix inversion and their applications.
CO 4	describe linear spaces and evaluate its basis and dimension with corresponding applications in the field of computer science.
CO 5	use the concept of eigen values, eigen vectors, diagonalisation of matrices and orthogonalization in
	inner product spaces for understanding physical and engineering problems.
Learnin	g Resources:
1.	Reena Garg, Engineering Mathematics-I, Khanna Publishers.
2.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
3.	Kanti B. Dutta, Mathematical Methods of Science and Engineering, Cenage Learning.
4.	Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, NewDelhi.
5.	S.K. Mapa, Higher Algebra: Abstract and Linear, Sarat Book House Pvt.Ltd.
6.	Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
7.	Michael Greenberg, Advanced Engineering Mathematics, Pearson.
8	Hoffman and Kunze, Linear algebra, PHI.
9	Friedberg, Insel, Spence, Linear algebra, Pearson

Name of	the course	Physics			
Course	Code: BS(CS/IT) 102	Semester: 1 st			
Duration	n: 6 months	Maximum Marks: 100			
Teachin	g Scheme	Examination Scheme			
Theory:	3 hrs./week	Mid Term Exam I: 15 Marks			
Tutorial:	Nil	Mid Term Exam II: 15 Marks			
Practical	: Nil	Assignments, Quiz etc.: 20 Marks			
Credit: 4		Semester End Exam: 75 Marks (Two third weightage for final reckoning i.e., 50 marks)			
Objectiv	ve:				
1.	The objective of the course is to provide	an exposure to - the Old Quantum Theory including the			
	dual nature of radiation and particle, the	Schrodinger theory of Quantum Mechanics, the			
	fundamentals of statistical description of	a system of particles, the development of the classical free			
	electron theory of metals, the basic prope	erties of semiconductors and related devices.			
2.	This course also provides an understandi	ng of practical problem-solving techniques for the chapters			
	covered in the course.				
Pre-Req	uisite:				
1.	Class 11 th and 12 th standard knowledge of	of Physics.			
2	Class 11 th and 12 th standard knowledge of	of Mathematics.			

Module	Content	Hours	Marks.
1	Quantum Mechanics: Introduction to quantum physics, Black body radiation,	14	
	Photoelectric Effect and Compton Effect and their explanation using the		
	photon concept. De Broglie hypothesis, wave particle Duality. Born's		
	interpretation of the wave function, verification of matter waves, uncertainty		
	principle, Schrodinger wave equation, particle in box, quantum harmonic		
2	Oscillator, hydrogen atom	0	
2	Statistical Mechanics: Statistical description of a system of particles, Phase	8	
	space, Microstates and macrostates, Boltzmann's formula for the entropy, Boltzmann distribution function (derivation not reqd.), Classical ideal gas,		
	Qualitative treatment of Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein		
	statistics.		
3	Electronic Materials: Free electron theory of metals, Density of states and	10	
3	energy band diagrams, Kronig-Penny model (to introduce origin of band gap),	10	
	Energy bands in solids, E-k diagram, Direct and indirect band gaps, Types of		
	electronic materials: metals, semiconductors, and insulators, Density of states,		
	Occupation probability, Fermi level, Effective mass, Phonons.		
4	Semiconductors: Intrinsic and extrinsic semiconductors, Dependence of	10	
	Fermi level on carrier-concentration and temperature (equilibrium carrier		
	statistics), Carrier generation and recombination, Carrier transport: diffusion		
	and drift, p-njunction, Metal-semiconductor junction (Ohmic and Schottky),		
	Semiconductor materials of interest for optoelectronic devices.		
Course C			
After com	apletion of the course, a student would be able to-		
CO 1	Recall the Old Quantum Theory including the dual nature of radiation and parti		
	particle duality principle for an understanding of the Uncertainty Principle of qu	uantum me	chanics.
CO 2	Analyze the Schrodinger theory of Quantum Mechanics and apply it for differe	nt potential	s.
CO 3	Develop the statistical description of a system of particles and discuss different	kinds of St	atistics.
CO 4	Discuss the successes and failure of free electron theory of metals and develop	the band th	eory of
	solids using Kronig Penny Model		
CO 5	Discuss various properties of semiconductors and related devices and develop r	nathematic	al
	interrelation between properties of interest		
	Resources:		
1.	S.N Ghosal: Introduction to Quantum Mechanics		
2.	Dr. Amal Kr. Chakraborty: Integrated Engineering Physics		
3.	Sujay Kumar Bhattacharya: Engineering Physics		
4.	Hitendra K. Malik: Engineering Physics.		
5.	J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-H	fill Inc. (19	95)
6.	B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Son	is, Inc., (20	07)
7.	S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley (2008).		
8	A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication	ns, Oxford	University
	Press, New York (2007)		
9	P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall of India	(1997)	

Name o	of the course	BASIC ELECTRICAL ENGINE	ERING			
Course Code: ES(CS/IT) 101		Semester: 1 st				
Duration: 6 months		Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
		Mid Term Exam I: 15 Marks				
Tutorial: 1 hr./week Mid Term Exam II: 15 Marks						
Practical: Nil Assignment & Quiz etc.: 20 Marks						
Credit F	Points: 4	Semester End Exam: 75 Marks (Two	o third weig	htage		
		for final reckoning i.e., 50 marks)		56.		
Objectiv	e:	<u> </u>				
1.	Impart a basic knowledge of several ele	ctrical quantities such as current, volta	ige, power,	energy,		
	frequency etc. to the students					
2.	Provide the basic difference between DO		to solve Do	C		
	and AC circuits used in electrical device					
3	Explain the working principle, construct		transforme	er and		
4	different DC and AC rotating electrical			1		
4	Explain the working principles of different power converters and other low tension switchgear and protective devices; as well as, make the students acquainted with the calculations for energy					
	consumption, especially for household a	-	s for energy	/		
Pre-Req		ppheations				
1.	Class 12th standard knowledge of Mathe	emotics and Dhysics				
		matics and Filysics	TT	M1		
Module	Content		Hours	Marks.		
1	DC Circuits Electrical circuit elements (P. L. and C.) voltage and aument soumes	8			
	Electrical circuit elements (R, L and C Kirchoff current and voltage laws, anal	_				
	excitation. Super position, Thevenin and	-				
	analysis of first-order RL and RC circuit					
2	AC Circuits		8			
	Representation of sinusoidal waveform	s, peak and rms values, phasor				
	representation, real power, reactive power					
	Analysis of single-phase ac circuits const					
	combinations (series and parallel), rese	-				
2	circuits, voltage and current relations in Transformers	star and delta connections.	6			
3	Magnetic materials, BH characteristics, ic	deal and practical transformer	0			
	equivalent circuit, losses in transforme	•				
	Auto-transformer and three-phase trans	-				
4	Module 4: Electrical Machines		8			
	Generation of rotating magnetic fields,	Construction and working of a				
	three-phase induction motor, Significan	ce of torque-slip characteristic.				
	Loss components and efficiency, startin	g and speed control of induction				
5	Power Converters		6			
	DC-DC buck and boost converters, duty					
	three-phase voltage source inverters; sin	nusoidal modulation.				
6	Electrical Installations		6			

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB,					
MCCB, Types of Wires and Cables, Earthing. Types of Batteries,					
Important Characteristics for Batteries. Elementary calculations for					
energy consumption, power factor improvement and battery backup.					
Outcome:					
apletion of the course, a student would be able to-					
explain the overall electrical power system, its different parameters, components, protective					
elements and power converters.					
solve problems of DC and AC circuits using different methods and network theorems.					
derive different expressions to evaluate performance of electrical machines.					
analyze electric machines and circuits using equivalent circuits, phasor analysis etc.					
identify different electric machines with the help of different characteristics and parameters for					
appropriate applications.					
calculate energy consumption in an electrical circuit.					
Resources:					
D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.					
D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.					
L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.					
E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.					
V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.					
	MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup. **Posterior of the course, a student would be able to- explain the overall electrical power system, its different parameters, components, protective elements and power converters. solve problems of DC and AC circuits using different methods and network theorems. derive different expressions to evaluate performance of electrical machines. analyze electric machines and circuits using equivalent circuits, phasor analysis etc. identify different electric machines with the help of different characteristics and parameters for appropriate applications. calculate energy consumption in an electrical circuit. **Resources:** D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.				

Name of the course Course Code: BSL(CS/IT) 103 Duration: 6 months		Physics Laboratory				
		Semester: 1 st Maximum Marks: 100				
Theory:	Nil	Attendance: 10				
Tutorial:	Nil	Preparation of Lab Report: 30				
Practical:	3 hrs./week	Precision of work done: 30				
Credit Po	ints: 1.5	Presentation/ analysis of the result: 10				
		Viva Voce: 20				
Module	Content		Hours	Marks.		
1	Determination of an unknown resistance using Carey Foster Bridge		3			
2	Determination of energy band gap by for	ır-probe method	3			
3	Determination of Planck's constant using	g photocell	3			
4	Verification of Stefan's law of blackbody	y radiation	3			
5	Verification of Bohr's atomic orbital theory through Frank-Hertz experiment		3			
6	Determination of wavelength of light by Newton's ring method		3			
Course C	Outcome:		1	I		
After con	pletion of the course, a student would be a	able to-				

identify different equipment and accessories as per specification needed to conduct a particular

CO1

	experiment			
CO2	calibrate very small resistance using Carey Foster Bridge			
CO3	estimate the band gap of any semiconductor using four probe method			
CO4	estimate the temperature of an approximate black body			
CO5	apply Einstein equation of Photoelectric effect to evaluate Planck constant			
CO6	estimate the radius of curvature of a curved surface using Newton's Ring experiment			
CO7	validate Bohr's hypothesis using Frank-Hertz experiment			
CO8	develop skill to work in a team			
Learning	Learning Resources:			
Separate	manuals associated to each experiment are provided to students			

Name of the course		BASIC ELECTRICAL ENGINEER	ING LAB			
Course	Code: ESL(CS/IT) 102	Semester: 1 st Maximum Marks: 100				
Duratio	n: 6 months					
Teachin	g Scheme	Examination Scheme				
Theory:	Nil	Attendance: 10				
Tutoria	l: Nil	Preparation of Lab Report: 30				
Practica	al: 2 hrs./week	Experimental data/ Precision of work	done: 30			
Credit Points: 1		Presentation/ analysis of the result: 10)			
		Viva Voce: 20				
Module	Content		Hours	Marks.		
1	First activity: Introduction to mentioning of the do's and Don'ts. Not performed, and instruction for writing Group formation. Students are to be inferevaluation.	3				
2	Introduction and uses of following instraction Voltmeter Multimeter Oscilloscope Demonstration of real-life resistors, capand autotransformer.		3			
3	Demonstration of cut-out sections of mac machine, Synchronous machine and sing	•	3			
4	Calibration of ammeter and Wattmeter.		3			
5	Determination of steady state and transic C circuit to a step change in voltage.	-	3			
6	Determination of steady state response of R-L and R-C and R-L-C circuit and calculation of impedance and power factor.					
7	Determination of resonance frequency a parallel R-L-C circuit.	nd quality factor of series and	3			

8	Open circuit and short circuit test of a single-phase transformer	3				
	Load test of the transformer and determination of efficiency					
	and regulation					
9	Demonstration of three phase transformer connections. Voltage	3				
	and current relationship, phase shifts between the primary and					
10	Measurement of power in a three-phase unbalanced circuit by two wattmeter					
	method.					
11	Determination of Torque —Speed characteristics of separately excited DC					
	motor.					
12	Determination of Torque speed characteristics and observation of direction					
- 10	reversal by change of phase sequence of connection of Induction motor.					
13	Determination of operating characteristics of Synchronous generator.					
14	Demonstration of operation of (a) DC-DC converter (b) DC-AC converter					
	(c) DC-AC converter for speed control of an Induction motor.					
15	Demonstration of components of LT switchgear.					
Course	Outcome:					
After co	mpletion of the course, a student would be able to-					
CO1	identify different equipment and accessories as per specification needed to conduct a					
	particular experiment.					
CO2	set up an electric wiring for household application.					
CO3	calibrate of different measuring instruments viz ammeter, voltmeter, wattmeter	er.				
CO4	verify three network theorems (Thevenin, Norton and Superposition) using differe	nt				
	combination of circuits.					
CO5	determine the steady & transient response of AC networks.					
CO6	determine different operating characteristics viz load characteristics of motors and	generators.				
CO7	estimate parameters of transformers by open circuit and short circuit tests.					
CO8	develop skill to work in a team.					
Learnin	g Resources:					
1	S. K. Bhattacharya and K. M. Rastogi, "Experiments in Basic Electrical Engir	neering", New Age				
	International (P) Limited, Publishers, 2003					
2	A. Chakrabarti, S. Debnath and C. K. Chandra, "Basic Electrical Engineering"	', Tata McGraw Hill,				
	2009					
3	D. P. Kothari and B. S. Umre, "Laboratory Manual for Electrical Machines"	, I.K. International				
	Publishing House Pvt. Limited, 2017					

Name of the course	ENGINEERING GRAPHICS AND DESIGN
Course Code: ESL(CS/IT) 103	Semester: 1 ST
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 1 hr./week	Attendance: 10
Tutorial: Nil	Preparation of Lab Report: 30

Practical: 4 hrs./week	Experimental data/ Precision of work done: 30
Credit Points: 3	Presentation/ analysis of the result: 10
	Viva Voce: 20

	Viva Voce: 20		
Module	Content	Hours	Marks.
1	Introduction to Engineering Drawing	2L+8P	
	Principles of Engineering Graphics and their significance, Drawing		
	instruments and their uses; Different types of lines and their uses;		
	Lettering; Dimensioning; Drawing standards and codes; Scales: concept of		
	R.F, plain and diagonal scales.		
2	Geometrical Construction and Curves used in Engineering Practice	1L+4P	
	Construction of polygons, conic sections including the rectangular		
	hyperbola (General method only); Cycloidal curves: cycloid, epicycloid,		
	hypocycloid; Involute.		
3	Orthographic Projections of Points, Lines, Planes	1L+4P	
	Principles of orthographic projections, conventions; Projections of points;		
	Projections of lines inclined to both reference planes; Projections of		
	planes like circle, polygons etc.		
4	Projections of Regular Solids	1L+ 4P	
	Projections of regular solids like cone, pyramids, prisms etc.		
5	Sections of Right Regular Solids and Development of Surfaces Section	1L+4P	
	of solids like cylinder, prism, pyramid, cone etc.		
	Development of surfaces of right regular solids: cylinder, prism,		
	pyramid and cone.		
6	Isometric Projections	1L+4P	
	Principles of isometric projection, isometric scale, isometric views,		
	conventions; Isometric views of planes, simple and compound solids;		
	Conversion of isometric views to orthographic views and vice-versa.		
7	Overview of Computer Graphics, Customisation & CAD Drawing Listing the	1L+4P	
	computer technologiesthat impact on graphical communication;		
	Demonstrating knowledge of the theory of CAD Software [such as:		
	The menu system, toolbars (standards, object properties, draw, modify and		
	dimension), drawing area (background, crosshairs, coordinate system),		
	dialog boxes and windows, shortcut menus (button bars), the command		
	line (where applicable), the status bar, different methods of zoom as used		
	in CAD, select and erase objects. Setting up of the drawing page and the		
	printer, including scale settings; Setting up of units and drawing limits;		
	ISO and ANSI standards for coordinate dimensioning and tolerancing;		
	Orthographic constraints, Snap to objects manually and automatically;		
	Producing drawings by using various coordinate input entry methods to		
	draw straight lines, Applying various ways of drawing circles.		
8	Annotations, Layering & Other Functions	2L+8P	
	Applying dimensions to objects; Applying annotations to drawings;		
	Setting up and use of layers, layers to create drawings; Create, edit and		
	use customized layers; Changing line lengths through modifying existing		
	lines (extend/lengthen); Printing documents to paper using the print		
	command; Orthographic projection techniques; Drawing sectional views		

			1
	of composite right regular geometric solids and project the true shape of		
	the sectioned surface; Drawing annotation, Computer-Aided Design		
	(CAD) software modelling of parts and assemblies. Parametric and non- parametric solid, surface, and wireframe models. Part editing and two-		
	dimensional documentation of models. Planar projection theory,		
	including sketching of perspective, isometric, multi view, auxiliary, and		
	section views. Spatial visualization exercises. Dimensioning guidelines,		
	tolerancing techniques; dimensioning and scale multi views of dwelling.		
9	Demonstration of a Simple Team Design Project	2L+8P	
	Geometry and topology of engineered components: creation of		
	engineering models and their presentation in standard 2D blueprint form		
	and as 3D wire frame and shaded solids; meshed topologies for		
	engineering analysis and tool-path generation for component		
	manufacture; geometric dimensioning and tolerancing; Use of solid-		
	modelling software for creating associative models at the component and		
	assembly levels; floor plans that include: windows, doors, and fixtures		
	such as WC, bath, sink, shower, etc. Applying colour coding according to		
	building drawing practice; Drawing sectional elevation showing		
	foundation to ceiling; Introduction to Building Information Modelling		
	(BIM).		
Course C			
	apletion of the course, a student would be able to-		
CO1	apply basics of Engineering Graphics standards for interpreting Engineering	Drawing	
CO2	apply features of Engineering Graphics to create working drawings		
CO3	draw and explain plan and elevation of different solid objects		
CO4	develop solid model with Computer Aided Design (CAD) software		
CO5	communicate to other engineering personnel via engineering graphics langua	ge	
Learning	Resources:		
1	Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Chard	otar Publishing	House
2	Shah, M.B. &Rana B.C. (2008), Engineering Drawing and Computer Graphi	cs, Pearson Ed	lucation
3	Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication	n	
4	Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Sc	itech Publisher	rs.
5	(Corresponding set of) CAD Software Theory and User Manuals		

B.	Tech.	(IT)	Curriculum,	2018-1	Ç

FIRST YEAR SECOND SEMESTER

			2 nd SEMESTE	R			
SL.	TYPE OF	COURSE		HOURS	HOURS PER WEEK		
	COURSE	CODE	COURSE TITLE	Lecture	Tutorial	Practical	Credit
THE	CORY			•			
01	Basic Science course	BS(CS/IT) 204	Chemistry	3	0	0	3
02	Basic Science course	BS(CS/IT) 205	Mathematics – II	3	1	0	4
03	Engineering Science Course	ES(CS/IT) 204	Programming for Problem solving	3	0	0	3
04	Humanities & Social Sciences including Management	HS(CT/IT/ CS)201	English	2	0	0	2
SES	SIONAL/PRAC	ΓICAL					
01	Basic Science course	BSL(CS/IT) 206	Chemistry Laboratory	0	0	3	1.5
02	Engineering Science Course	ESL(CS/IT) 205	Programming for Problem solving Laboratory	0	0	4	2
03	Engineering Science Course	ESL(CS/IT) 206	Workshop /Manufacturing Practices	1	0	4	3
04	Humanities & Social Sciences including Management	HS(CT/IT/ CS)202	Language Lab.	0	0	2	1
05		CLA(IT)-2	Comprehensive Laboratory Assessment	-	-	-	1
TOT	AL			12	1	13	20.5

Name of	the course	Chemistry		
Course C	Code: BS(CS/IT) 204	Semester: 2 nd		
Duration: 6 months		Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
_	Theory: 3 hrs./week Mid Term Exam I: 15 Marks			
Tutorial:		Mid Term Exam II: 15 Marks		
Practical:	Nil	Assignment & Quiz etc.: 20 Marks		
Credit Po		Semester End Exam: 75 Marks (Two t	hird weigl	ntage for
Crount 1 o		final reckoning i.e., 50 marks)	anna weigi	inage 101
Objective	e:			
1.	The objective of the course is to provide a	in exposure to the atomic bonding, atom	ic and cry	stal
	structure, crystalline defects and various p	properties of chemistry.		ļ
2.	This course also provides an understanding	g of practical problem-solving techniqu	es for the	chapters
	covered in the course.			
Pre-Requ				
1.	This course also provides an understanding	g of practical problem-solving techniqu	es for the	chapters
	covered in the course.		Г	
Module	Content		Hours	Marks.
1	Chemical bonding in molecules:		6	
	MO theory, Structure, bonding and energy	y levels of bonding and shapes of		
	many atom molecules,			
	Chemistry of coordination compounds rea			
	configuration of cis- and trans- isomers by			
	complexes, substitution reaction on square			
	(example and applications). Structure and limitations.	boliding. VB description and its		
	Elementary Crystal Field Theory: Splittin	g of d ⁿ configurations in octahedral		
	square planar and tetrahedral fields, crysta	-		
	strong fields; pairing energy. JahnTeller d			
2	Spectroscopic techniques and applications	S	2	
	Principles of spectroscopy and selection r	ules. Electronic spectroscopy.		
	Fluorescence and its applications in medic	cine. Vibrational and rotational		
	spectroscopy of diatomic molecules. Appl	lications. Nuclear magnetic resonance		
	and magnetic resonance imaging, surface	•		
	Diffraction and scattering. d-d transitions:	_		
	transitions; spectrochemical series of ligar	nds; charge transfer spectra		
	(elementary idea).		4	
3	Periodic properties	11	4	
	Effective nuclear charge, penetration of or	_		
	orbital energies of atoms in the periodic ta atomic and ionic sizes, ionization energies	_		
	electronegativity, polarizability, oxidation			
	geometries, hard soft acids and bases, mol			
4	Chemical Thermodynamics	0	6	
ı	Concept of Thermodynamic system: Defin	nition with example of diathermal		
	, · · · · · · · · · · · · · · · · · · ·	<u>*</u>		1

		1	1
	wall, adiabatic wall, isolated system, closed system, open system, extensive		
	property, intensive property.		
	Introduction to first law of thermodynamics: different statements, mathematical		
	form. Internal energy: Definition, Example, Characteristics, Physical		
	significance, Mathematical expression for change in internal Energy,		
	Expression for change in internal energy for ideal gas.		
	Enthalpy: Definition, Characteristics, Physical significance, Mathematical		
	expression for change in Enthalpy, Expression for change in enthalpy for ideal		
	gas.		
	Heat Capacity: Definition, Classification of Heat Capacity (Cp and CV):		
	Definition and General expression of Cp - C _V . Expression of Cp - C _V for ideal		
	gas. Reversible and Irreversible processes: Definition, Work done in Isothermal		
	Reversible and Isothermal Irreversible process for Ideal gas,		
	Adiabatic changes: Work done in adiabatic process, Interrelation between		
	thermodynamic parameters (P, V and T), slope of P-V curve in adiabatic and		
	isothermal process. Application of first law of thermodynamics to chemical		
	processes: exothermic, endothermic processes, law of Lavoisier and Laplace,		
	Hess's law of constant heat summation, Kirchoff's law.		
	2 nd law of thermodynamics: Statement, Mathematical form of 2nd law of		
	thermodynamics (Carnot cycle). Joule Thomson and throttling processes; Joule		
	Thomson coefficient for Ideal gas, Concept of inversion temperature.		
	Evaluation of entropy: characteristics and expression, entropy change in		
	irreversible cyclic process, entropy change for irreversible isothermal expansion		
	of an ideal gas, entropy change of a mixture of gases.		
	Work function and free energy: Definition, characteristics, physical		
	significance, mathematical expression of ΔA and ΔG for ideal gas, Maxwell's		
	Expression (only the derivation of 4 different forms), Gibbs Helmholtz		
	equation. Condition of spontaneity and equilibrium reaction.		
5	Surface and Colloid Chemistry		
	Adsorption, absorption and sorption, Physical and Chemisorption, Langmuir	3	
	and Freundlich isotherm, Multilayer adsorption, BET isotherm and its		
	application to surface area measurement, Sols (reversible and irreversible),		
	emulsion and emulsifier, micelle, gels, application of colloids, qualitative idea		
	of electrokinetic phenomena, Zeta potential.		
6	Solid state Chemistry	3	
	Introduction to stoichiometric defects (Schottky & Frenkel) and non –		
	stoichiometric defects (Metal excess and metal deficiency). Role of silicon		
	and germanium in the field of semiconductor.		
7	Stereochemistry	6	
	Representations of 3 dimensional structures, structural isomers and		
	stereoisomers, configurations and symmetry and chirality, enantiomers,		
	diastereomers, optical activity, absolute configurations and conformational		
	analysis. Isomerism in transitional metal compounds		
8	Organic reactions and synthesis of a drug molecule	6	
	Introduction to reactions involving substitution, addition, elimination,		
	oxidation, reduction, cyclization and ring openings. Synthesis of a commonly		
	used drug molecule.		
		L	1

Course	outcomes:
After co	mpletion of the course, a student would be able to-
CO 1	describe various types of bonding and connectivity in a molecular system.
CO 2	use various tools to analyze different linkages present in a molecular system to determine exact structure of a molecule.
CO 3	estimate the energy change of a chemical reaction using thermodynamic parameters.
CO 4	apply knowledge of surface phenomena and colloidal properties of solids in assessing particulate behaviour.
CO 5	identify different imperfections in solids based on understanding of the ideal crystal structures.
CO 6	Identify three-dimensional structures of different isomeric molecules and their participation in different chemical reactions like addition, substitution, elimination reaction etc.
Learnin	g Resources:
1.	P. C. Rakshit, Physical Chemistry, Sarat Book House (7th Edition).
2.	S. Glasston, Text Book of Physical Chemistry, Macmillan India Limited.
3.	S. Pahari, Physical Chemistry, New Central Book Agency.
4.	R. P. Sarkar, Inorganic Chemistry (Vol-1 & II)
5.	J.D .Lee, Concise Inorganic Chemistry(5th Edition) Chapman & Hall
6	I. L. Finar,(Vol-I) Organic Chemistry, Addison Wesley Longman, Inc.
7	Physical Chemistry, Atkins, 6th Edition, Oxford Publishers.
8	Organic Chemistry, G Mark Loudon, 4th Edition, Oxford Publishers.
9	Basic Stereochemistry of Organic Molecules, Subrata Sengupta, Book syndicate Pvt. Ltd.

Name of the course		Mathematics-II
Course C	ode: BS(CS/IT) 205	Semester: 2 nd
Duration	: 6 months	Maximum Marks: 100
Teaching	Scheme	Examination Scheme
Theory: 3	3 hrs/week	Two Mid Term Exams: 30 Marks
Tutorial:	l hrs/week	Assignments, Quiz etc.: 20 Marks
Credit Points: 4 Semester End Exam: 75 Marks (Two third weightag final reckoning i.e., 50 marks)		Semester End Exam: 75 Marks (Two third weightage for final reckoning i.e., 50 marks)
Objective:		
1.	To learn the ideas of probability and random variables, various discrete and continuous probability	
	distributions with their properties and their applications in physical and engineering environment.	
2.	To understand the basic ideas of statistics with different characterization of a univariate and	
	bivariate data set.	
3.	To learn statistical tools for analyzing data samples and drawing inference on a given data set.	
4.	To understand the logic and framework of the inference of hypothesis testing.	
5.	To create and interpret frequency table.	
Pre-Requisite:		
1.	This course also provides an understand	ing of practical problem-solving techniques for the chapters
	covered in the course.	

Module	Content	Hours	Marks.
1	Module 1: Basic Probability:	8	
	Probability spaces, conditional probability, independence, Baye's theorem,		
	infinite sequences of Bernoulli trials ,Discrete random variables, Binomial		
	distribution, Poisson distribution, Poisson approximation to the Binomial		
	distribution, , sums of independent random variables; Expectation, variance of		
	Discrete Random variables, Moments, Chebyshev's Inequality.	_	
2	Module 2 : Continuous Probability Distributions:	5	
	Continuous random variables and their properties, Distribution functions and		
	densities, Normal, Exponential and Gamma densities.		
3	Module 3: Bivariate Distributions:	7	
	The Multinomial distribution, marginal distribution, bivariate expectation,		
	Variance of a sum, Correlation coefficient, Independent random variables,		
	Bivariate distributions of continuous random variable and their properties, distribution of sums and quotients, Conditional densities.		
4	Module 4: Basic Statistics:	6	
4	Frequency distribution, measures of Central tendency, central moments and	0	
	raw moments, Skewness and Kurtosis, Sampling and it's distribution,		
	population distributions, central limit theorem.		
5	Module 5: Applied Statistics:	4	
	Correlation and regression – Rank-correlation, scatter diagram, Curve fitting by		
	the method of least squares- fitting of straight lines, second degree parabolas		
	and more general curves.		
6	Module 6: Statistical Hypothesis Testing:	6	
	Test of significance: Large sample test for single proportion, difference of		
	proportions, single mean, difference of means, and difference of standard		
	deviations. test for single mean, difference of means and correlation		
	coefficients, test for ratio of variances - Chi-square test for goodness of fit and		
	independence of attributes.		
Course of			
	apletion of the course, a student would be able to-		
CO 1	calculate probabilities using conditional probability, rule of probability and Baye		
CO 2	define discrete and continuous distribution and solve the mathematical and engineer	ering probl	ems
	using these distributions.		
CO 3	compute probabilities of bivariate distributions, correlation coefficient, regression	n coefficie	ents.
CO 4	analyze various statistical problem and compute measure of central tendency, dis	persion, sl	kewness
	and kutosis and fit a curve from a given data set.		
CO 5	relate Type I error and level of significance for a hypothesis test when making a	decision a	nd
	explain meaning of significance level in context.		
Learning	Resources:		
1.	Reena Garg, Chandrika Prasad, Advanced Engineering Mathematics, Khanna Pu	blishers. 2	•
2.	Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons		
3.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.		
4.	N.G. Das, Statistical Methods (Combined Volume), Tata-McGraw Hill.		
5.	Banarjee, De & Sen, Mathematical Probability, U.N. Dhar & Sons.		
5.	Banarjee, De & Sen, Mathematical Probability, U.N. Dhar & Sons.		

6	A. Gupta, Groundwork of mathematical probability and statistics, Academic publishers.
7	S. Ross, A First Course in Probability, Pearson Education India
8	W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley
9	John E. Freund, Ronald E. Walpole, Mathematical Statistics, Prentice Hall.

Name o	f the course PROGRAMMIN	NG FOR PROBLEM SOLV	VING
Course	Code: ES(CS/IT)204 Semester: 2 nd		
Duration: 6 months Maximum Marks: 100		xs: 100	
Teachir	Teaching Scheme Examination Scheme		
Theory:	3 hrs./week Mid Term Exam	/week Mid Term Exam I: 15 Marks	
Tutorial	: Nil Mid Term Exam	II: 15 Marks	
Practica	1: Nil Assignment & Qu	uiz etc.: 20 Marks	
Credit P	Points: 3 Semester End Exa	am: 75 Marks (Two third wei	ghtage
	for final reckoning	g i.e., 50 marks)	
Objective	e:		
1.	To understand the various steps in Program development and ba	sic concepts in C Programmin	g
	Language.		
2.	To learn how to write modular and readable C Programs in C	C to solve problems.	
Pre-Requ	uisite:		
1.	Basic fundamental knowledge of Mathematics.		
2.	Knowledge of arithmetic and logical reasoning		
Module	Content	Hours	Marks.
1	Introduction to Computing	4	
	Computer Systems-Hardware and Software, Different compon	ents,	
	Computer Languages, Algorithm, Flowchart, Representation of A	Algorithm and	
	Flowchart with examples.		
2	Introduction to C	4	
	History of C, Features of C, Structure of C Program, Character		
	Tokens-Keywords, Identifiers, Constants, Variables, Data types	-	
3	Statements	4	
	Selection statements (Decision Making)- if and switch statements		
	examples, Repetition statements (loops)- while, for, do-while stater		
	examples, Unconditional statements- break, continue, goto statements-	nents with	
4	examples.	4	
4	Arrays Declaration and Initialization, One dimensional Arrays, Two di	mansional 4	
	Arrays, Searching, Basic Sorting Algorithms.	inchsional	
5	Strings	4	
	Declaration and Initialization, String Input / Output fund		
	manipulation functions.		
6	Function	8	
	Designing Structured Programs, Types of Functions-User defined f	functions,	
	Standard functions, Categories of functions, Parameter Passing to		1

	Storage classes, Dynamic Memory Allocation, Recursion.			
7	Pointers	5		
	Introduction, Definition and Declaration of pointers, address operator,			
	Pointer variables, Pointers with Arrays.			
8	Structures and Unions	3		
	Introduction, Declaration and Initialization, Array of Structures, Unions.			
9	File Handling (Only if time is available)	2		
Course	outcomes:			
After co	mpletion of the course, a student would be able to-			
CO 1	Explain fundamentals of computers.			
CO 2	Use syntax and semantics of C Language to translate the algorithms into programs.			
CO 3	Implement program modules using branching and looping.			
CO 4	Organize data using arrays and structures.			
CO 5	Assemble functional program modules using functions and recursion.			
Learnin	g Resources:			
1.	Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill			
2.	E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill			
3.	Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Pre	entice Hall	of India	

Name of the course		ENGLISH		
Course Code: HS(CT/IT/CS) 201		Semester: 2 nd		
Duration: 6 months		Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theory:	2 hrs./week	Mid Term Exam I: 15 Marks		
Tutorial	: Nil	Mid Term Exam II: 15 Marks		
Practica	1: Nil	Assignment & Quiz etc.: 20 Marks		
Credit F	Points: 2	Semester End Exam: 75 Marks (Two	third weigl	ntage
		for final reckoning i.e., 50 marks)		
Objectiv	e:			
1.	To develop and integrate the use of the four language skills i.e. Reading, Listening,			
	Speaking and Writing.			
2.	To revise and reinforce structure already learnt			
3.	To enable the learner to communicate effectively and appropriately in real life situations.			
Pre-Req	uisite:			
1.	Basic English Grammar knowledge of	class 12 th standard		
Module				
1	Vocabulary building and new words con	cept:	4	
	Concept of Word formation	on		
	Collection of five new words of	everyday (from Oxford Dictionary &		
	English Newspapers)	•		
	Synonyms & Antonyms			

	Masculine & Feminine		
2	Singular & Plural Basic Writing Skill — Written English	4	
2	Sentence construction	4	
	 Use of Phrases, idioms and clauses in sentences 		
	Importance of proper punctuation		
	 Techniques for writing precisely 		
	• Paragraph writing		
3	Avoiding mistakes & errors in English	4	
	Subject — Verb agreement	7	
	Noun — Pronoun agreement		
	Misplaced Modifiers		
	• Articles		
	• Prepositions		
4	Practice of Writing English — Form	6	
	• Precis writing		
	• Essay writing		
	• Letter writing		
	• Comprehension		
	 English Translation — Mother tongue to English & vice versa 		
5	Communication Skill — incorporation of presentation skill & negotiation skilll	6	
	Listening comprehension		
	• Spoken English		
	• Comprehension, intonation, accent, stress and rhythm		
	• Conversation and dialogues		
	 Manoeuvring sentences — replacing words 		
	 Interview — personal interview / Group Discussion 		
	 Public speaking 		
Course o			
	apletion of the course, a student would be able to-		
CO 1	develop a minimum repository of English words to use for making meaningful		
CO 2	write correct sentences using phrases, idioms, clauses with proper punctuation	on marks.	
CO 3	identify the common mistakes and grammatical errors in sentence construction.		
CO 4	write letters, essays, precis etc. in proper format.		
CO 5	able to speak English with correct pronunciation.		
CO 6	communicate effectively in public forum and in professional field		
Learning	Resources:		
1.	Technical Education: Raman and Sharma		
2.	Effective Technical Communication: Ashraf Rizvi		
3.	Effective Communication and Soft Skills: Nitin Bhatnagar & Mamta Bhatnaga	ar	

Name of	the course	Chemistry Lab		
Course Code: BSL(CS/IT) 206		Semester: 2 nd		
Duration	: 6 months Maximum Marks: 100			
Teaching	heme Examination Scheme			
Theory:	Nil	Attendance: 10		
Tutorial:	Nil	Preparation of Lab Report : 30		
Practical:	3 hrs./week	Experimental data/ Precision of work done: 30		: 30
Credit Po	ints: 1.5	Presentation/ analysis of the result : 10		
	Viva Voce : 20			
Objective	2:			
1.	To develop laboratory practice and safety.			
2.	To develop laboratory skills and instrumentat	ion.		
3.	To deepen the understanding of concepts.			
4.	To provide scientific skills and chemical known	wledge.		
Pre-Requ				
1.	Class 12 th standard knowledge in Practical Cl	nemistry		
Module	Content		Hours	Marks.
1	Qualitative analysis of an inorganic sample sa	alt.	6	
2	Estimation of Fe(II) present in a solution per	manganometrically	3	
3	Estimation of Fe(II) present in a solution dich	nromatometrically.	3	
4	Determination of hardness of water in ppm u	nit complexometrically.	6	
5	Determination of surface tension of a given li	quid.	(any	
6	Determination of viscosity of a given liquid.	<u></u>	two	
7	Determination of rate constant of a reaction.		from Modu	
8	Determination of cell constant and conductance of a solution.		le 4-	
9	Potentiometry: determination of redox potent	ial and emf.	9)	
Course o	utcomes:			
After con	appletion of the course, a student would be able	to-		
CO 1	analyze qualitative parameters (basic and acid		stalagmo	meter and
CO 2	Ostwald's viscometer to determine surface te			
CO 3	estimate quantities of Fe (II) permanganetom	<u> </u>		
	estimate hardness of water complexometrical	•	d winnerit	of
CO 4	handle stalagmometer and Ostwald's viscome liquid.	eter to determine surface tension an	id viscosii	y 01
CO 5	develop perception about safety standards to	be maintained inside the laboratory	·.	
CO 6	develop skill to work in a team.			
	Resources:			
1.	Practical Chemistry, Prof Sachin Dutta, Bhar	ati Book Stall		
2.	Practical Chemistry, R Mukhopadhyay & P		td.	
3.	Practical Chemistry, Pandey, Bajpai, Giri, S Chand Publication			
	J,J,JE, 2, 22			

4.	Vogel's Qualitative Inorganic Analysis, G Svehla, B Shivasankar (7th Edition), Pearson
5.	Vogel's Quantitative Chemical Analysis, J Mendham, R C Denney, J D Barnes, M Thomas, B
	Shivasankar (6th Edition), Pearson

Name of	f the course	PROGRAMMING FOR PROBLEM SOLVING LAB				
Course Code: ESL(CS/IT) 205		Semester: 2 nd				
Duration: 6 months		Maximum Marks: 100				
Teachin	g Scheme	Examination Scheme				
Theory: Nil Attendance: 10						
Tutorial: Nil Preparation of Lab Report: 30						
Practica	l: 4 hrs./week	Experimental data/ Precision of wor	rk done: 30)		
Credit Points: 2 Presentation/ analysis of the result: 10						
Objective	e:					
1.	To understand the various steps in Program	n development.				
2.	To understand the basic concepts in C Prog	gramming Language.				
3.	To learn how to write modular and readab	le C Programs				
4.	To learn to write programs (using structure	ed programming approach) in C to solv	e problems			
Pre-Requ	nisite:					
1.	knowledge of Mathematics.					
2.	knowledge of arithmetic and logical open	rations.				
3.	knowledge of reasoning.					
Module	Content	Hours	Marks.			
1	Familiarization with programming environment	onment	2			
2	Simple computational problems using ar	thmetic expressions	3			
3	Problems related to Branching and logical	al expressions	3			
4	Iterative problems using loops e.g., sum	of series	3			
5	1D Array manipulation, searching, sorting	g related problems	3			
6	Problems related to 2D arrays and String	s manipulation	3			
7	Problems related to Functions, call by value, call by reference and dynamic memory allocation 3					
8	Problems regarding Recursion		8			
9	Pointers related problems		3			
10	Problems on structures and Unions 6					
Course o	utcomes:					
After con	npletion of the course, a student would be ab					
CO 1	formulate algorithms for simple problems and translate given algorithms to a working and					
COA	correct program					
CO 2	identify and correct logical errors and syntax errors encountered at run time.					
CO 3	write iterative as well as recursive programs.					
CO 4	represent data in arrays, strings and structures and manipulate them through a program					

CO 5	declare pointers of different types and use them in defining self-referential structures.				
CO 6	work effectively in a team.				
Learning	Learning Resources:				
1.	E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill				
2.	Programming with C by T Jeyapoovan, Vikas Publishing House Pvt Ltd				
3.	Programming in C by J.B. Dixit, Laxmi Publications Pvt Ltd				

Name of the course	WORKSHOP/ MANUFACTURING PRACTICES
Course Code: ESL(CS/IT) 206	Semester: 2 nd
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 1 hr./week	Attendance: 10
Tutorial: Nil	Preparation of Lab Report: 20
Practical: 4 hrs./week	Experimental data/ Precision of work done: 30
Credit Points: 3	Presentation/ analysis of the result: 20

Objective:

Pre-Requisite:

Module	Content	Hours	Marks.
1	Manufacturing methods: casting, forming, machining, joining and advanced	2	
	manufacturing methods		
2	CNC machining, Additive manufacturing	3	
3	Fitting operations & power tools	3	
4	Electrical & Electronics	3	
5	Carpentry	3	
6	Plastic moulding, glass cutting	3	
7	Metal casting	3	
8	Welding (arc welding & gas welding), brazing	8	
9	Machine shop	3	
10	Smithy	6	

Course outcomes:

After completion of the course, a student would be able to-

	•
CO 1	explain different manufacturing processes which are commonly employed in industry to fabricate
	components using different materials including CNC machining, additive manufacturing.
CO 2	complete a defined job in different sections of mechanical workshop e.g., carpentry, fitting etc.
CO 3	find out dimensional accuracies and dimensional tolerances possible with different manufacturing
	processes.
CO 4	assemble different components to produce small devices.
CO 5	make electrical wiring for household applications.
Learning	Resources:

1.	Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop							
	Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.							
2.	Kalpakjian S And Steven S. Schmid, "Manufacturing Engineering and							
	Technology",4thedition, Pearson Education India Edition, 2002.							
3.	Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology — I" Pearson							
	Education, 2008.							

4.	Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998.							

Name of the course	LANGUAGE LAB
Course Code: HSL(CT/IT/CS) 202	Semester: 2 nd
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: Nil	Attendance: 10
Tutorial: Nil	Preparation of Lab Report: 20
Practical: 2hrs./week	Experimental data/ Precision of work done: 30
Credit Points: 1	Presentation/ analysis of the result: 20

Objective:

Pre-Requisite:

Module	Content	Hours	Marks.
1	LISTENING	4	
	Listening to pre-recorded short episodes, conversations, passages, stories,		
	news bulletin, speeches by famous personalities — Listening for general and		
	specific information etc.		
2	READING:	4	
	Reading aloud — by students individually — reading rhymes — proverbs —		
	passages on various topics of interest — Newspaper reading — Reading		
	humorous passages — Anecdotes — Stories — tricky sounds (conditioners) —		
	Reading manuals — Reading individual sentences with articulation,		
	pronunciation, Tones, Punctuation, pauses etc Reading the titles of		
	popular books, movies and poems.		
3	SPEAKING:	6	
	Self-introduction — introducing one self, one's family — one's friends and		
	relatives, one's country etc. Welcome Address, Vote of thanks.		
	Extempore speeches. Short speech on simple topics on simpler themes for		
	about one minute. Role play — Group Discussion — Debate — Seminars —		
	Machine Descriptions (depending upon branches) — Compering —		
	Interviewing others by Asking Questions — Interview Techniques —		
	Conversational Practice — Telephonic Conversation — Telephonic		
	Interviews — How to establish conversation / dialogues — Entry		
	Attempts/Admissions.		
4	WRITING:	6	
	Writing Resume, preparing Curriculum Vitae, Converting newspaper		
	headlines into sentences. Formation of Sentences — Using the table of		

	Sentence-making and producing multiple sentences. Framing Questions for						
	the responses given. Tips for better performance in interviews.						
	Describing Objects. Describing Situations; Project report writing						
	(outline): significant features of Project report writing — Organization —						
	Presentation — Use of Impersonal Passives — Acknowledgements.						
5	PROFESSIONAL ETHICS & ORGANISATIONAL BEHAVIOUR: Different	4					
	kinds of Ethics — Ethics in different fields — Engineering Ethics — Senses of						
	Engineering Ethics — Moral Values — Integrity & Loyalty — Work Ethics —						
	Respect for others and authority — Empathy — Caring and Sharing — Honesty —						
	Courage and Commitment — Valuing Time — Cooperation & Teamwork —						
	Safety and Risk — Right Action — Professional ideals and virtues —						
	Individual's Ambition — Conflict Resolution — Self- Confidence — Customs						
	and Manners — General Behaviour — Etiquettes to be followed — Professional						
	Responsibility — Accountability — Leadership Quality — Effective						
	Communication skills.						
Course o	utcomes:						
After con	appletion of the course, a student would be able to-						
CO 1	develop listening skill with proper comprehension.						
CO 2	read aloud fluently various topics with proper pronunciation and articulation and necessary pauses.						
CO 3	able to speak English fluently with correct pronunciation during Group Discussions,	Seminar					
	presentations, Telephonic conversations etc.						
CO 4	write Resume, prepare Curriculum Vitae and Convert newspaper headlines into sentences etc.						
CO 5	develop self-confidence and leadership quality through effective communication skills.						

B.	Tech.	(IT)) Curriculum,	2018-1	Ç
ъ.	I CCII.	(11	<i>)</i> Cullicululli,	2010-1	

SECOND YEAR FIRST SEMESTER

3 rd SEMESTER									
SL. NO.	PAPER CODE	PAPER NAME	L	Т	P	CONTACT HRs./WEEK	CREDIT		
THE	THEORY								
01	BS(CS/IT)307	Mathematics- III	3	0	0	3	3		
02	ES(CS/IT)307	Digital Electronics	3	0	0	3	3		
03	PC(CS/IT)301	Computer Organization	3	1	0	4	4		
04	PC(CS/IT)302	Data structure & Algorithms	3	0	0	3	3		
05	HS(CS/IT)303	Economics for Engineers	3	0	0	3	3		
SESS	SIONAL/PRACTI	CAL							
01	ESL(CS/IT)308	Digital Electronics Lab	0	0	3	3	1.5		
02	PCL(CS/IT)303	Computer Organization Lab	0	0	3	3	1.5		
03	PCL(CS/IT)304	Data structure & Algorithms Lab	0	0	3	3	1.5		
04	PCL(CS/IT)305	IT Workshop (python/matlab)	0	0	3	3	1.5		
05	CLA(IT)-3	Comprehensive Laboratory Assessment	0	0	0	0	1		
TOT	TOTAL			1	12	28	23		

Name of	the course	Mathematics-III	
Course Code: BS(CS/IT) 307		Semester: 3 rd	
Duration: 6 months		Maximum Marks: 100	
Teachin	g Scheme	Examination Scheme	
Theory:	3 hrs/week	Two Mid Term Exams: 30 Marks	
Tutorial:	NIL	Assignments, Quiz etc.: 20 Marks	
Credit P	oints: 3	End Semester Exam: 50 Marks	
Objectiv	re:	<u> </u>	
1.	To learn the concept of Cauchy sequence	c. convergence of infinite series.	
3.	<u> </u>	url using the calculus and multiple variable	
4.	To understand Green, Gauss and stokes the		•
5.		solution of higher order differential equation	n .
5.	To create mathematical models using first		JII.
		•	
6.	To understand basic concept of graph the	eory.	
Pre-Req	•		
1.	Mathematics –I (BS(CS/IT)101		
2.	Engineering Mathematics (UG level)		
Module	Content		Lecture
1	M 11 10		Hours
1	Module 1:Sequences and series	s for convergence, power series, Taylor's	8
	series. Series for exponential, trigonomet		
2	Module 2:Multivariable Calculus (Diff		7
	Limit, continuity and partial derivatives,	,	
	Directional derivatives, Total derivative;	Maxima, minima and saddle points;	
	Gradient, curl and divergence and related	•	
3	Module 3: Multivariable Calculus (Int	-	8
		d polar), change of order of integration in	
	double integrals, Change of variables (Ca Gauss and Stokes (Statement only) and re	•	
4	Module 4: Ordinary Differential Equa		9
т	First Order Differential Equation, Exact,		
	Equations of first order but not of first de	•	
	solvable for y, equations solvable for x a		
	solution.		
	Second order linear differential equations	-	
	method, method of variation of paramete	rs, Cauchy-Euler equation.	
5	Module 5: Graph Theory	and Parker and III . The Control of	8
	Basic Concept of graph, Walk, Path Circ diagraph.	uit, Euler and Hamiltonian graph,	
	Matrix Representation: Incidence & Adja	acency matrix	
	Tree: Basic Concept of tree, Binary tree,	-	
	algorithm for finding the minimal spanni	-	
Course	Outcomes:	-	1

After co	ompletion of this course, the learners will be able to -
CO1	apply the concept of sequence and convergence of infinite series in many approximation techniques in engineering disciplines and use the tools of power series to analyze engineering problems.
CO2	apply the knowledge for addressing the real life problems which comprises of several variables or
	attributes and identify extremum points in different surfaces of higher dimensions.
CO3	evaluate multiple integrals and apply the techniques to different physical problems.
CO4	solve first and second order ordinary differential equations by applying different techniques and also
	will be able to formulate differential equations for model systems and problems of engineering
	sciences.
CO5	apply the basic concepts of graph theory to network analysis, data analytics and many other branches
-	of computer science.
	ng Resources:
1	Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
2	Michael Greenberg, Advanced Engineering Mathematics, Pearson.
3	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers.
4	Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science.
5	Derek Holton & John Clark, A First Look at Graph Theory
6	Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
7	Raisinghania M.D, Advanced differential equation, S.Chand.
8	S.K Mapa, Real Analysis,Sarat
9	C Charles H.C. Little, Kee L. Teo, Bruce van Brunt, Real analysis via sequence and series, Springer
10	Douglas Brent West, Introduction to Graph Theory, Prentice Hall.
11	Robert wrede, Murray Spiegel, Schaum's Outline of Advanced Calculus, Third Edition, Schaum's outline
12	S.L. Ross, Differential equation, Willey.
13	Clark John, Holton Derek Allan, A First Look at Graph Theory, World Scientific.
14	E. L. Ince, Ordinary Differential Equations, Dover Publications.

Name of	the course:	Digital Electronics
Course (Code: ES(CS/IT)307	Semester: 3 th
Duration	a: 6 months	Maximum Marks: 100
Teaching	g Scheme	Examination Scheme
Theory C	ontact Hrs.: 3 hrs/week	Mid Semester-1 Exam: 15 Marks
Tutorial (Contact Hrs.: 0 hrs./week	Mid Semester-2 Exam: 15 Marks
Credit Point: 3		Assignment, Quiz & class attendance: 20 Marks
		End Semester Exam: 75 Marks (to be mapped into 50 marks)
Objectiv	Objective:	
1.	To study Analog Electronic devices.	
2.	To study boolean logic and logic gates.	
3.	To compare digital and analog electron	ic circuits.

Pre-Requ	uisite:	
1.	Basic Electrical Engineering ES(CS/IT)101	
Module	Content	Lecture Hours
1.	Basic Electronic devices: PN junction diode, Application of diodes in rectification, Half wave Full wave rectifier and Factors determining rectifier performance, Transistor, Transistor characteristics for CE, CB and CC mode, current amplification factors and their relationship, Introduction to JFET, MOSFET and CMOS.	08
2.	Number system, Boolean algebra & logic gates: Binary numbers & Boolean algebra, Logic gates, Truth Tables and function minimization using algebraic method, Karnaugh map, , Signed binary number representation with 1's and 2's complement methods, Maxterm, Minterm, Representation in SOP and POS forms; Realization of Boolean functions using NAND/NOR gates	10
3.	Combinational circuits: Adder and Subtractor circuits; Encoder, Decoder, Comparator, Multiplexer, De-Multiplexer, Parity Generator and checker.	10
4.	Sequential Circuits: Flip-flops - SR, JK, Master slave JK, D and T. Register, counter	08
	Outcomes:	
CO1	repletion of this course the students will be able to -	
	Identify the difference between analog and digital electronic systems.	
CO2	Compare the operation of semiconductor devices based on their characteristic cur	rves.
CO3	Explain number base conversions and K-Map.	
CO4	Construct various combinational logic circuits.	
CO5	Design various sequential circuits.	
	g Resources:	
1.	Morries Mano, Digital Logic Design, PHI	
2.	Kharate, Digital Electronics, Oxford	
3.	Leach & Malvino, Digital Principles & Application, Mc Graw Hill	
4.	D chattopadhyay & P.C.Rakshit. Electronics (Fundamentals and Applications), N International Publishers	lew Age
5.	Malvino, Electronic Principle, McGraw Hill.	
6.	Millman & Halkias, Integrated Electronics, McGraw Hill	
7.	Boyelstad & Nashelsky, Electronic Devices & Circuit Theory,PHI	
8.	R.P.Jain, Modern Digital Electronics, McGraw Hill	

Name of the course	Computer Organization
Course Code: PC(CS/IT)301	Semester: 3rd
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs/week	Mid Semester 1 Exam: 15 Marks

Tutorial:	al: 1 hrs/week Mid Semester 2 Exam: 15 Marks			
Practical: 0 hrs/week Assignment, Q		Assignment, Quiz, Attendance: 20 Marl	z, Attendance: 20 Marks	
Credit Po	redit Points: 4 End Semester Exam: 50 Marks (75 mar		ks converted to 50)	
Objectiv	2:			
1	To identify different processor architecture	es and their performance measurement	parameters.	
3	To develop the concept of instruction set of			
4	To design pipeline processor architecture.			
Pre-Requ				
1.				
Module 1.	Content		Lecture	
Module	Content		Hours	
1	Introduction: History of computing, von N	Jeumann machine, Instruction and	3	
	data, fixed-point and floating point number			
2	Processor design: Instruction Set Architect	ture-Instruction format, opcode	9	
	optimization; operand addressing; Instruct	ion implementation-data movement,		
	branch control, logical, Input/output and o			
	instruction implementation-addition and s	subtraction, multiplication-division,		
	2's complement multiplication; Booth's a	-		
	pair algorithm; high performance arithmet			
3	Control unit design: Hardwired control, m		6	
	micro-instruction formats, control optimiz			
4	Memory subsystem: Registers, Memory h		9	
	memory, cache memory, memory replacer			
	content addressable memory (CAM), mem	nory interleaving, real life problem		
	solution		7	
5	Peripherals: Basic properties, bus architectures, control and arbitration, interfacing of I/O devices, data transfer schemes –programmed I/O, memory		7	
	mapped I/O, I/O mapped I/O, DMA, mass	1 0		
6	Pipelining: Pipelining, data path and instru		6	
U	/ non-linear pipeline—reservation table, MA			
	processors.	AL, super-piperined and super-scalar		
Course C	Outcomes:		<u> </u>	
	appletion of the course the learners will be ab	ole to-		
CO1	Represent numbers in fixed-point and floa			
CO2	Visualize machine's instruction set architecture		fetch and execute	
	cycles, instruction formats, control flow, a			
CO3	Explain the design and functioning of a ma	<u> </u>	he data path	
	components (ALU, register file) and the co	ontrol unit.	•	
CO4	Design memory organization systems and	compare in terms of efficiency		
CO5	Analyse basic input/output functioning inc	cluding program controlled I/O and inte	rrupt I/O.	
CO6	Analyze performance improvement of sys	tem using instruction and memory level	parallelism	
Learning	Resources:			
1	Mano, M.M., "Computer System Architec	eture", PHI.		
2	Behrooz Parhami" Computer Architecture			
	<u>T</u>	<i>y</i>		

3	Hayes J. P., Computer Architecture & Organisation, McGraw Hill
4	Hamacher, Computer Organisation, McGraw Hill,
5	N. Senthil Kumar, M. Saravanan, S. Jeevananthan, Microprocessors and Microcontrollers OUP
6	Chaudhuri P. Pal, Computer Organisation & Design, PHI
7	P N Basu- Computer Organization & Architecture ,Vikas Pub

Name of	the course	Data Structure and Algorithm		
Course Code: PC(CS/IT)302		Semester: 3rd		
Duration	n: 6 months	Maximum Marks: 100		
Teachin	g Scheme	Examination Scheme		
Theory:	3 hrs/week	Mid Term Exam I: 15 Marks		
Tutorial:	NIL	Mid Term Exam II: 15 Marks		
Practical	: NII	Assignment.: 20 Marks		
Credit Po	pints: 3	Semester End Exam: 75 Marks (Two the	nird weighta	age for
		final reckoning i.e., 50 marks)	C	C
Objectiv	e:	-		
1. Т	O Understand basic data structures such as	s arrays, linked lists and trees.		
2. T	To Calculate the time complexities of access	ssing various data structures.		
3. T	The ability to decide based on a given prob	lem which data structure is appropriate.		
Pre-Req	uisite:			
1.	Programming for problem solving (ES(C	CS/IT) 204)		
Module Content			Lecture	
			Hours	
1	Introduction: Elementary Data Organiz	rations, Data Structure Operations -	10	
	insertion, deletion and traversal in arrays	s, asymptotic Notations, Time-Space		
	trade off, recursion, tail recursion, Towe	r of Hanoi, recursion tree and master		
	theorem method of complexity analysis,	Linear Search and Binary Search		
	Techniques and their complexity analysis	is, finding min max in $O(3n/2)$ time.		
2	Stacks and Queues: ADT Stack and its	operations; Algorithms and their	6	
	complexity analysis, Applications of Sta	cks - Expression Conversion and		
	evaluation – corresponding algorithms a	- · · · · -		
	and types of Queue- Simple Queue, Circ	cular Queue, Operations on each type of		
	Queue- Algorithms and their analysis.			
3	Linked List: Singly linked lists, Repres	entation in memory, Algorithms of	6	
	several operations -Traversing, Searchin	g, Insertion into, Deletion from linked		
	list; Linked List representation of Stack	and Queue; Doubly linked list -		
	not, Emileo Elot representation of State		1	
	operations, space and time analysis; Circ	cular Linked Lists - all operations and		
	_	-		
4	operations, space and time analysis; Circ	g algorithm.	10	
4	operations, space and time analysis; Circ complexity analysis; Floyd-Cycle findin	g algorithm. rent types of Trees - Binary Tree,	10	
4	operations, space and time analysis; Circ complexity analysis; Floyd-Cycle findin Trees: Basic Tree Terminologies, Differ	g algorithm. rent types of Trees - Binary Tree, ree, AVL Tree, binary heap, b-tree;	10	

	connection to binary trees and stack sortable permutations; Comparison of		
	performance of Heap, array and insertion priority queues.		
5	Hashing: Chaining, probing, Universal hashing function and analysis of	6	
	various hashing methods.		
Course (Outcomes:		
After cor	appletion of this course, the learners will be able to-		
CO1	Analyze the algorithm to determine the time and computation complexity.		
CO 2	Decide based on nature of the search problem which search technique (Linear S	earch, Bina	ary
	Search, hashing) to use when.		
CO 3	Implement the Stacks, Queues and linked list data structure and apply the same	to various	problems
CO 4	Apply non linear data structures in searching, insertion and retrieval of data. Analyze the time		me
	complexity of various balanced and unbalanced trees and to apply the data struc	ture to rele	vant
	problems.		
Learning	g Resources:		
1	Horowitz, Sahni, Anderson-Freed: Fundamentals of Data Structures in C (Sec	ond Editio	on),
	Universities Press, 2008.		
2	T.H. Cormen, C.E. Leiserson, R. Rivest and C. Stein: Introduction to Algorit	hms,(Seco	nd/Third
	Edition), PHI, 2009.		
3	R. Sedgewick: Algorithms in C, Pearson, 2004.		
4	Steven S Skiena, Algorithm design manual, 2 nd Edition, Springer.		
5	Steven S Skiena, Miguel A. Revilla, Programming Challenges: The Programmin	ng Contest	Training
	Manual (Texts in Computer Science) Springer.		

Name of the course		ECONOMICS FOR ENGINEERS			
Course Code: HS(CS/IT)303		Semester: 3 RD			
Duration: 6 months		Maximum Marks: 100			
Teaching	Scheme	Examination Scheme			
Theory: 3	3 hrs./week	Mid Term Exam I: 15 Marks			
Tutorial:	Nil	Mid Term Exam II: 15 Marks			
Practical:	Nil	Assignment.: 20 Marks			
Credit Points: 3		Semester End Exam: 75 Marks (Two third weightage for final reckoning i.e., 50 marks)			
Objective:					
1.	To understand various concepts of Economics, Accounting and Financial Management.				
2.	To familiarize with the application of the different topics covered in the syllabus.				
Pre-Requ	Pre-Requisite:				
1.	Class 12th standard knowledge of Mathematics.				
Module	Content		Lecture		
			Hours		
1	Introduction to Economics for Engineers	 Basic Introduction to Economics, 	6		
	Productive resources, Scarcity and the Ec	conomic problem, Efficiency and			
	sustainability, Engineering & Economics	, Scope of Economics for Engineers,			

	Dala of Engineers in Economic Desision making Desision " E	1	
	Role of Engineers in Economic Decision making, Problems in Economic		
	Decision-Making, Decision-Making Process.		
	Engineering Cost Concepts – Fixed, Variable, Marginal & Average costs, Semi-		
	variable and Step cost, Product and Period cost, Direct and Indirect cost, Sunk		
	cost, Shutdown cost, Opportunity cost, Recurring and Nonrecurring costs,		
	Anticipated and Unanticipated costs, Differential or Incremental costs, Cash		
	cost vs. Book costs, Life-Cycle Costing;		
	Cost estimation Techniques - Types Of Estimate, Approaches to cost estimation,		
	Cost Estimation Models - Per Unit Model, Segmenting Model, Cost Index		
	Model, Power-Sizing Model, Learning Curve Model, Benefits and difficulties in		
	estimation.		
2	Break-even analysis- Basic concept, terminology and assumptions, Derivation	5	
	of break-even point, Profit Volume (P/V) ratio, Margin of Safety, Uses and		
	limitations of break-even analysis.		
	Cash Flow, Interest and Equivalence: Cash Flow – Diagrams and Cash Flow		
	Statement, Time Value of Money, Interest factor and interest rate, Economic		
	Equivalence, Real, Nominal & Effective Interest rate.		
	Different Interest Formulae and their application.		
3	Capital budgeting and Project selection – Basic concept of capital budgeting,	9	
	Types of projects and cash flow patterns, features of a good capital budgeting		
	criteria; Net Present Value (NPV) Analysis, NPV criteria for revenue dominated		
	and cost dominated models, Internal Rate of Return (IRR) Analysis, Incremental		
	IRR, Comparison between NPV and IRR, Future Worth Analysis, Annual		
	Worth Analysis, Evaluation of Public Projects and Benefit-Cost Ratio Analysis,		
	Sensitivity Analysis.		
4	Inflation and Price Change – Definition, types, stages, causes and effects of	8	
	inflation.		
	Price Change with Index Numbers – Definition and features of Index Numbers,		
	Construction of index numbers, Price relative, Types of Index Numbers, Tests		
	of Index Numbers, Use of Price Indexes in Engineering Economic Analysis.		
	Uncertainty in Future Events - Uncertainty and Risk, Types of risk, Risk vs.		
	Return, Application of Probability to analyse risk, Using Expected Value,		
	Variance, and Coefficient of Variation to measure return and risk; Economic		
	Decision Trees, Simulation.		
5	Depreciation and Replacement Analysis - Basic aspects of depreciation,	8	
	Reasons for depreciation, Obsolescence, Depreciable assets, Depreciation,		
	depletion and amortization, Various methods of calculating depreciation;		
	Replacement analysis – Basic aspects, reasons for replacement, Types of		
	maintenance, Replacement Analysis Decision Map, Minimum Cost Life of a		
	New Asset.		
	Introduction to Accounting – Basic concepts, scope, functions and limitations of		
	Accounting, Financial Statements - Balance Sheet and Income Statement,		
	Financial Ratios, Uses and limitations of ratio analysis.		
	Introduction to Financial Management - Overview and scope of Financial		
	Management, Approaches to Financial Management, Objectives of Financial		
	Management, Role and Functions of a Financial Manager.		
	Tranagoment, Note and I anotions of a I maneral manager.		

Course (Outcomes:
After con	appletion of the course, a student would be able to:
CO 1	Explain various concepts of Economics, Accounting and Financial Management.
CO 2	Develop cost estimates using different cost estimation techniques.
CO 3	Solve problems using break-even analysis and interest formulae.
CO 4	Utilize various analysis methods for project selection.
CO 5	Apply Depreciation, Replacement Analysis, Index numbers and price change, Financial statements, Financial ratio analysis, return and risk analysis using appropriate methods in relevant problems.
Learning	Resources:
1.	R. Panneerselvam: Engineering Economics, PHI.
2.	H.L. Bhatia & S.N. Maheswari: Economics for Engineers, Second edition, Vikas Publishing House Pvt. Ltd.
3.	Donald Newnan, Ted Eschembach, Jerome Lavelle : Engineering Economics Analysis, OUP
4.	Sullivan and Wicks: Engineering Economy, Pearson
5.	Partha Chatterjee: Economics for Engineers, Vrinda Publications.
6.	James L. Riggs, David D. Bedworth, Sabah U. Randhawa : Economics for Engineers 4e , Tata McGraw-Hill .
7.	Niall M. Fraser, Elizabeth M. Jewkes: Engineering Economics Financial Decision Making for Engineers, Pearson
8.	M.Y. Khan & P.K. Jain: Financial Management Text, Problems & Cases, McGraw Hill Education.
9.	N.G. Das: Statistical Methods (combined volume), Tata McGraw-Hill.

Name of the course		Digital Electronics Lab.		
Course Code: ESL(CS/IT)308		Semester: 3 rd		
Duration	: 6 months	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme, Total Marks: 10	00	
Theory:	Nil	Attendance: 10		
Tutorial:	Nil	Preparation of Lab Report : 30		
Practical:	3 hrs./week	Experimental data/ Precision of work do	ne:30	
Credit Po	ints: 1.5	Presentation/ analysis of the result : 10		
		Viva Voce: 20		
Module	Content		Hours	
1.	I-V characteristics of semiconductor diod	le.	03	
2.	Input and output characteristics of BJT in CE configuration		03	
3.	Output and transfer characteristics of JFE	T in CS configuration.	03	
4.	Logic function realization using logic gat	es.	03	
5.	5. Design and implementation of half adder and full adder		03	
6.	Design and implementation of parity generator and checker		03	
7.	Construction of simple Decoder & Multiplexer circuits. 03			
8.	Realization of RS / JK / D flip flops using	g logic gates.	03	

Course	Outcomes:				
After co	impletion of this course the students will be able to -				
CO1	Measure static and dynamic resistance of P-N junction diode from the I-V characteristics.				
CO2	Identify different regions of operation of BJT and JFET from the characteristics curves.				
CO3	Construct logic circuits using minimum number of logic gates.				
CO4	Implement adder, parity generator and checker, decoder and multiplexer circuits using basic logic				
	gates.				
CO5	Construct different types of sequential circuits using basic logic gates.				
Learnin	Learning Resources:				
1	Laboratory Manual For Introductory Electronics Experiments by Maheshwari, L.K., Anand, M.M.S.				
	, New Age International (P) Ltd., Publishers.				

Name of	the course	Computer Organization Lab		
Course (Code: PCL(CS/IT)303	Semester: 3 rd		
Duration	n: 6 months	Maximum marks:100		
Teaching	g Scheme	Examination scheme:		
Theory:	Nil	Attendance: 10 marks		
Tutorial:	Nil	Preparation of Lab Report: 30 marks		
Practical:	: 3 hrs/week	Experimental data/ Precision of work done: 30 marks		
Credit Po	oints:1.5	Presentation / analysis of the result: 30 marks		
		Viva voce: 20 marks		
Module	Content			
1.	Familiarization with IC chips: Multiplex (Truth table verification and application)	er, Decoder, Priority Encoder, ROM, Comparator, Flip flop		
2.	Design Adder, Subtractor using basic gates, Multiplexer and decoder			
3.	Design Adder Subtractor composite unit			
4.	Design BCD adder			
5.	Design Carry look ahead adder circuit			
6.	Design ALU(Arithmetic Logic Unit)			
7.	Design of counter using Flip Flop			
8.	Synthesize sequential circuits			
9.	Execute Read and Write operation using	RAM chip		
10.	Cascading of RAM IC for vertical and he	orizontal expansion		
	Dutcomes: npletion of the course students will able to	-		
CO1	Asses different Integrated circuits			
CO2	Design combinational circuits			
CO3	Design sequential circuits			
CO4	Implement different real life applications computer architecture.	s of combinational and sequential circuits required for basic		

CO5	Evaluate different applications for higher order design				
Learning	Learning Resources:				
1	Mano, M.M., "Computer System Architecture", PHI.				
2	M. Lotia, Modern IC data and substitution Manual, PHI				

Name of the course:		Data Structure & Algorithm Lab			
Course C	Code: PCL(CS/IT)304	Semester: 3 rd			
Duration	Duration: 6 months Maximum Marks: 100				
Teaching	ching Scheme Examination Scheme				
Theory:N	y:NIL Attendance 10				
Tutorial:	NIL	Preparation of Lab Report: 30			
Practical:	3 hrs/week	Experimental data/Precision of work do	ne: 30		
Credit Po	int:1.5	Presentation/ analysis of the result: 10			
		Viva Voce:20			
Objective	2:				
1.	To understand the working of basic data s	structures			
2.	To analyse the performance of various date	ta structures			
3.	To implement various data structures				
4.	To understand the difference between line	ear and non-linear data structure			
Pre-Requ	iisite:				
1.					
Module	Content	Hours	Marks		
1	Application of array insertion, deletion problems.	n and traversal operations in solving	03		
2	Linear Search, Binary Search Techniques	and time complexity comparison.	03		
3	Application of binary search like divide a related O (log n) problems.	and conquer technique in various array	03		
4	Implementation and applications of Stack	s and queues using arrays.	03		
5	Implementation of Singly linked lists, Lin	ked representation of Stack and Queue.	03		
6	Implementation of Binary Search Tree.		03		
7	Application of binary trees in solving vari	ous problems.	03		
8	Array implementation of binary heap.		03		
9	Comparison of performance of binary Hea	ap and array as priority queues.	03		
10	Implementation of B-Tree.	03			
11	Implementation of Chaining and probing hashing.	g techniques of collision resolution in	03		
Course C	Outcomes:		1		
	ppletion of this course, the learners will be a	able to -			
CO1	Implement linear data structures.				
CO ₂	Analyze data sets and problems.				

CO3	Implement non-linear data structures.
CO4	Compare various searching techniques.
CO5	decide which data structure to implement based on the problem.
Learnii	ng Resources:
1.	Horowitz, Sahni, Anderson-Freed: Fundamentals of Data Structures in C (Second Edition),
	Universities Press, 2008.
2.	T.H. Cormen, C.E. Leiserson, R. Rivest and C. Stein: Introduction to Algorithms, (Second/Third
	Edition), PHI, 2009.
3.	R. Sedgewick: Algorithms in C, Pearson, 2004.
4.	Steven S Skiena, Algorithm design manual, 2 nd Edition, Springer.

Name of the course:		IT WORKSHOP					
Course Code: PCL(IT/CS)305		Semester: 3 rd					
Duration	: 6 months	Maximum Marks: 100					
Teaching	Scheme	Examination Scheme					
Theory C	ontact Hrs.:	Attendance: 10					
Tutorial C	Contact Hrs.:	Preparation of Lab Report : 20					
Practical:	3 hrs./week	Experimental data/ Precision of work d	lone : 30				
Credit Po	int: 1.5	Presentation/ analysis of the result : 20					
		Viva Voce: 20					
Objective	2:						
1.	To implement Python programs using core	e Python programming concepts and fu	nctions				
2.	To understand Object Oriented Python Pro	ogramming techniques					
Pre-Requ	nisite:						
1.	Basic Programming concept						
Module							
1.	Python Fundamentals			10			
	Python Character Set, Python Tokens, Basic structure of Python Program,						
	Variables and assignments, Multiple Assignments						
	Output in Python, Data Types and Operators, Control Structure, Sequence						
	Statements, Selection Statements, range() function, Iterative Statements, Jump						
	Statements						
2.	Strings		3	10			
	Accessing Values in Strings, Traversing a String, String Operators, Built-In						
	String Methods						
3.	Lists		3	10			
	Creating a List, Accessing Lists, Difference between String and List,						
	Traversing a List, List Operations						
4.	Tuples		3	10			
	Tuple vs List, Creating a Tuple, Accessing Tuples, Traversing a Tuple,						
	Comparing Tuples, Common Tuple Operators, Packing and Unpacking Tuples,						
	Tuples Built-In Functions, Deleting a Tup	le					

5.	Dictionary	3	10				
	Creating a Dictionary, Properties of Dictionary Keys, Traversing a Dictionary,						
	Accessing Keys or Values Separately, Nested Dictionary, Adding Elements to						
	Dictionary, Updating Elements in a Dictionary, Deleting Element from a						
	Dictionary, Dictionary Built-In Methods						
6.	Introduction to Python Modules	3	10				
	Math Module, Random Module, Statistics Module						
7.	Functions	3	10				
	Scope, Parameter passing, Passing strings, Default parameters, Return values,						
	Positional parameters						
8.	Object Oriented Programming(OOP) With Python	6	10				
	Basics of OOP, Class and Objects, Inheritance, Types of Inheritance						
9.	File Handling	3	10				
	Need for data file, Types of file: Text, Binary and Comma separated value files						
10.	Data Structures	3	10				
	Stacks: Push, Pop using a list, Queues: Insert, Delete using a list						
Course	Outcomes:						
After co	ompletion of this course the students will be able to -						
CO1	Interpret the fundamental Python syntax and semantics and be fluent in the use	of Pytho	on control				
	flow statements						
CO ₂	Express proficiency in the handling of strings and functions						
CO3	Identify the commonly used operations involving file systems						
CO4	Apply object oriented programming concepts						
CO5	Determine the methods to create and manipulate Python programs by utilizing li	sts, tupl	es and				
	dictionaries	_					
Learnii	ng Resources:						
1.	https://www.anaconda.com						
2.	Rakesh K. Yadav, Srinivas Arukonda, Monu Singh, Tapasya Dinkar, Dileep H	Kumar Y	Yadav, Zero				
	to Mastery in Python Programming, Vayu Education of India, ISBN: 978938976						
3.	Pooja Sharma, Programming in Python, BPB Publications, ISBN: 9789386551276						
4.	Reema Thareja, Python Programming- Using Problem Solving Approach, OU.	P India.	ISBN:				
-	9780199480173	,	- · · ·				

B.	Tech.	(IT)	Curriculum,	2018-19

SECOND YEAR SECOND SEMESTER

	4 th SEMESTER						
SL. NO.	PAPER CODE	PAPER NAME	L	Т	P	CONTACT HRs./WEEK	CREDIT
THE	ORY						
01	BS(CS/IT)408	Discrete Mathematics	3	1	0	4	4
02	ES(CS/IT)409	Communication Engineering	3	0	0	3	3
03	PC(CS/IT)406	Design & Analysis of Algorithm	3	0	0	3	3
04	PC(CS/IT)407	Formal Language and Automata Theory	3	1	0	4	4
05	PC(CS/IT)408	Computer Architecture	3	1	0	4	4
SESS	SIONAL/PRACTI	CAL					
01	ESL(CS/IT)410	Communication Engineering Lab	0	0	3	3	1.5
02	PCL(CS/IT)409	Algorithm Lab	0	0	3	3	1.5
03	PCL(CS/IT)410	Programming Lab using C++	0	0	3	3	1.5
04	CLA(IT)-3	Comprehensive Laboratory Assessment	0	0	0	0	1
MAN	MANDATORY COURSE						•
01	MC(CS/IT)401	Environmental Sciences	2	0	0	2	0
ТОТ	TOTAL			3	9	29	23.5

Name of	the course Dis	screte Mathematics		
Course C	Code: BS(CS/IT) 408 Ser	Semester: 4 th		
Duration	Duration: 6 months Maximum Marks: 100			
Teaching	Teaching Scheme Examination Scheme			
	eory: 3 hrs./week Two Mid Term Exams: 30 Marks			
		signments, Quiz etc.: 20 Marks		
Credit Po	Credit Points: 4 End Semester Exam: 50 Marks			
Objective	p•			
1.	To learn the concept of division algorithm and	Linteger modulo n		
3.	To understand counting techniques and combi		robobility	
	· ·		100ability.	
4.	To learn recurrence relations and generating fu			
5.	To learn a given logic sentence and can check			
5.	To understand Algebraic structures and classif	<u>*</u>		
6.	To understand basic concept of graph theory,	Dual and planar graph.		
Pre-Requ	uisites:			
1.	Mathematics –I (BS(CS/IT)101,Mathematics-	·III(BS(CS/IT)307)		
2.	Engineering Mathematics (UG level)			
Module	Content		Lecture	
			Hours	
1	Module 1: Theory of Numbers:		8	
	Principles of Mathematical Induction, Well O			
	theory and properties of divisibility; Fundame	•		
	Euclidean Algorithm for finding G.C.D and so	• •		
	with simple examples; Congruence, Residue of	_		
2	and its examples, Chinese Remainder Theorem	n.	7	
2	Module 2: Counting Techniques:	and avaluational Dagumana	7	
	Pigeon- hole Principle, Principles of inclusion relations: Formulation & Modelling of differe			
	recurrence relations, Solution of linear recurre			
	coefficients (upto second order) by (i) The ite			
	roots method (iii) Generating functions metho			
3	Module 3: Propositional Logic:		7	
	Syntax, Semantics, Validity and Satisfiability,	, Basic Connectives and Truth		
	Tables, Logical Equivalence: The Laws of Lo	gic, Logical Implication, Rules of		
	Inference, The use of Quantifiers. Proof Techn	niques: Some Terminology, Proof		
	Methods and Strategies, Forward Proof, Proof	•		
	Contraposition, Proof of Necessity and Suffic	iency. Disjunctive and		
	Conjunctive normal form.		10	
4	Module 4: Algebraic Structures and Morph		10	
	Algebraic Structures with one Binary Operation	-		
	Groups, Congruence Relation and Quotient St	-		
	Normal Subgroups, Quotient group, Homomo (Elementary properties only). Algebraic Struc			
1	(Elementary properties only). Algebraic Struc	tures with two billary Operation,		

	Rings, Integral Domain and Fields. Boolean algebra and Boolean Ring,					
	Identities of Boolean Algebra, Duality, Representation of Boolean Function.					
5	Module 5: Graph Theory:	8				
	Planar and Dual Graphs. Kuratowski's graphs. Homeomorphic graphs. Eulers					
	formula ($n - e + r = 2$) for connected planar graph and its generalisation for					
	disconnected graphs. Detection of planarity. Graph colouring. Chromatic					
	numbers of simple graphs. Chromatic Numbers and its bounds, Independence					
	and Clique Numbers, Perfect Graphs-Definition and examples, Chromatic					
	polynomial and its determination, Applications of Graph Colouring. Simple					
	applications of chromatic numbers. Statement of four and five colour theorems.					
Course	Outcomes:					
	mpletion of this course, the learners will be able to –					
CO1	determine multiplicative inverses, integer modulo n and solve linear congruence	es using Euc	elidean			
	algorithm.					
CO2	solve different engineering problems using counting techniques and recurrence	relation.				
CO3	express a given logic sentence in terms of predicates, quantifiers, and logical connectives and derive					
	the solution for a given problem using deductive logic and prove the solution based on logical					
	inference.					
CO4	classify the algebraic structure for a given mathematical problem and evaluate E	Boolean fun	ctions and			
	simplify expressions using the properties of Boolean algebra.					
CO5	apply the basic concepts of graph theory and find chromatic polynomial of a gra	ıph.				
Learnir	g Resources:					
1	C L Liu and D P Mohapatra, Elements of Discrete Mathematics A Computer Or	riented App	roach, 3rd			
	Edition by, Tata McGraw – Hill.					
2	N. Chandrasekaran and M. Umaparvathi, Discrete Mathematics, PHI					
3	J.K. Sharma, Discrete Mathematics, Macmillan.					
4	Malik, Mordeson, Sen, Fundamentals of abstract algebra, Tata McGraw-Hill					
5	Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw –	Hill				
6	Susanna S. Epp, Discrete Mathematics with Applications,4th edition, Wadsworth Publishing Co. Inc.					
7	Douglas Brent West, Introduction to Graph Theory, Prentice Hall					
8	Clark John, Holton Derek Allan, A First Look at Graph Theory, World Scientifi	ic				

Name of the course:	Communication Engineering
Course Code: ES(CS/IT)409	Semester: 4 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory Contact Hrs.: 3 hrs/week	Mid Semester-1 Exam: 15 Marks
Tutorial Contact Hrs.:	Mid Semester-2 Exam: 15 Marks
Credit Point: 3	Assignment, Quiz & class attendance: 20 Marks
	End Semester Exam: 75 Marks (to be mapped into 50 marks)
Objective:	

le F	Lecture Hours		
3. To study different shift keying techniques 4. To study different aspects of satellite communication Pre-Requisite: 1. Modu Content le 1. Introduction to Communication Engineering, need of Modulation, Amplitude 1.			
4. To study different aspects of satellite communication Pre-Requisite: 1. Modu Content I I Introduction to Communication Engineering, need of Modulation, Amplitude			
Pre-Requisite: 1. Modu Content le 1. Introduction to Communication Engineering, need of Modulation, Amplitude 1. Introduction to Communication Engineering (1) and (2) and (3) are set to be a se			
1. Modu Content L E E E Introduction to Communication Engineering, need of Modulation, Amplitude 1			
Modu Content le Introduction to Communication Engineering, need of Modulation, Amplitude 1.			
le H 1. Introduction to Communication Engineering, need of Modulation, Amplitude 1			
transmitted power of AM, DSB-SC modulation & SSB-SC modulation techniques, calculation of Bandwidth and Savings of power, Demodulation of AM, Superheterodyne Receiver	12		
2. Frequency Modulation(FM): Concept of FM, Direct & Indirect Method, Bandwidth calculation of FM, Demodulation of FM. Phase Modulation(PM): Concept of PM, generation of PM from FM.)5		
3. Pulse & Digital Communication: Sampling Theorem, aliasing effect, natural and flat top sampling, PAM, PWM,PPM, basic concept of Pulse Code Modulation (PCM), concept of quantization and quantization error, Companding, DPCM, Delta Modulation and Adaptive Delta Modulation, signal to quantisation noise ratio in PCM system. ASK, FSK, PSK, QPSK	12		
4. Data Formatting: NRZ-Unipolar, NRZ-polar, NRZ-Bipolar, RZ-Bipolar, Manchester Coding, Synchronous and Asynchronous Data Transmission, Concept of Satellite Communication)7		
Course Outcomes: After completion of this course the students will be able to -			
CO1 Explain the necessity of Modulation and how to transfer information from one place using Amplitude Modulation, Frequency Modulation and Phase Modulation.	to anothe	r place	
CO2 Apply the concept of sampling and quantization for analog to digital signal conversi	ion.		
CO3 Compare various techniques of digital communication techniques.			
CO4 Compare different line coding techniques.			
CO5 Compare Satellite Communication system with terrestrial communication system.			
Learning Resources:			
1. Modern Digital and Analog Communication Systems by B.P. Lathi, Published by Ox Press.	Modern Digital and Analog Communication Systems by B.P. Lathi, Published by Oxford University Press.		
2. An Introduction to Analog and Digital Communications by Simon Haykin (Wiley Inc.)	An Introduction to Analog and Digital Communications by Simon Haykin (Wiley India)		
3. Principles of Communication Engineering by Taub H. & Shilling D.L TMH	Principles of Communication Engineering by Taub H. & Shilling D.L TMH		
4. Introduction to Digital and Data Communication – Michael A. Miller, Jaico Publishi	Introduction to Digital and Data Communication – Michael A. Miller, Jaico Publishing House		
5. Communication Systems by A. B. Carlson, Published by McGraw-Hil			
6. Principles of Analog and Digital Communication by Jerry D Gibson, Published MacMillan.	Principles of Analog and Digital Communication by Jerry D Gibson, Published by		
7. A Text Book of Analog and Digital Communication by A Kumar, Umesh Publication	A Text Book of Analog and Digital Communication by A Kumar, Umesh Publication		
8. Communication Systems (Analog and Digital) by Sanjay Sharma, Published by S.K.	.Kataria &	Sons	

9. Modern Electronic Communication, Principles and Practice- Sharma & Sinha, Dhanpat Rai Publishing Company (p) Ltd

Name of	the course	Design and Analysis of Algorithm		
Course Code: PC(CS/IT)406		Semester: 4th		
Duration	: 6 months	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory:	3 hrs./week	Mid Term Exam I: 15 Marks		
Tutorial:	NIL	Mid Term Exam II: 15 Marks		
Practical	NIL	Assignment.: 20 Marks		
Credit Po		Semester End Exam: 75 Marks (Two	third weigh	tage for
0100111		final reckoning i.e., 50 marks)		101
Objectiv				
1.	To understand different paradigms of algor	rithms such as greedy, dynamic progra	amming, div	vide and
	conquer etc			
2.	To calculate the time complexities of algor	rithms.		
3.	The ability to decide based on a given prob	olem which design paradigm and algor	rithm is app	ropriate
Pre-Req	uisite:			
1.	Data Structure and Algorithm (PC(CS/IT)3	302)		
Module	Content		Lecture	
			Hours	
1	Models of computation & Algorithm des	sign frameworks: Models of	5	
	computation - RAM model, Deterministic	and Non-deterministic problems,		
	Tractable and Intractable problems, Solvab			
	- Divide/Decrease and Conquer, Backtrack			
	Programming, Decision and Optimization	_		
	Conquer, Greedy and Dynamic Programmi			
2	Sorting: Comparison based sorts - Bubble		8	
	quick sort, merge sort, analysis and compa	-		
	Radix sort, count sort; Median order statist			
3	Illustrations of various design framewor		7	
	Dynamic Programming - Optimal substructure and overlapping sub problems;			
	Matrix-chain multiplication; Backtracking - 8-queens problem; Greedy Method			
4	- Knapsack problem, Job sequencing with			
4	Graph Algorithms: BFS and DFS- algorithms:		6	
	shortest path, All pair shortest paths; Prim'	s and Kruskai's algorithms for		
5	finding minimum spanning tree. String matching problem: Naive algorithm, Knuth-Morris-Pratt (KMP)		3	
J	algorithm.	ını, Knum-woms-Frau (KWF)	3	
6	Amortized Analysis: Basic concept of am	portized analysis disjoint set data	4	
U	structure.	ioruzeu anarysis, disjoint set data	+	
7	P and NP: Notion of NP Class: P, NP, NP	-hard NP-complete reduction	3	
,	(concept only); Cook's theorem (statement	•		
	(consept only), cook is incoroni (statement	· ···· <i>J)</i>	1	

Course	Course Outcomes:				
After co	After completion of this course, the learners will be able to-				
CO1	Classify algorithms as on the basis of various design paradigms.				
CO2	Analyze a problem to determine which design paradigm to use to solve the problem.				
CO3	Clearly distinguish between problems employing divide and conquer, greedy and dynamic programming.				
CO4	Solve various graph problems efficiently.				
CO5	Identify whether a problem is in P or NP				
Learnin	Learning Resources:				
1	T.H.Cormen, C.E. Leiserson, R.L.Rivest and C. Stein, "Introduction to Algorithms", PHI.				
2	Ellis Horowitz, Sartaz R. Sahani, "Fundamentals of Computer Algorithms". Computer Science Press.				
3	A. Aho, J. Hopcroft and J. Ullman, "The Design and Analysis of algorithms", Pearson Education.				
4	D.E. Knuth: The Art of Computer Programming, Vol. 1, Vol. 2 and Vol. 3, Addison-Wesley.				
5	G.Brassard, P.Bratley, Fundamentals of Algorithmics -, PHI.				
6	S.Baase, Allen VenGelder"Computer Algorithms-Introduction to Design & Analysis"- 3 rd Edition, Pearson Education				

Name of	ne of the course: Formal Language and Automata Theory		
Course Code: PC(CS/IT)407 Semester: 4 th		emester: 4 th	
Duration: 6 months		laximum Marks: 100	
Teaching	g Scheme Ex	xamination Scheme	
Theory C	Contact Hrs.: 2 hrs/week M	lid Semester-1 Exam: 15 Marks	
Tutorial (Contact Hrs.: 2 hrs/week M	lid Semester-2 Exam: 15 Marks	
Credit Po	pint: 4 As	ssignment, Quiz & class attendance: 20 Marks	
End Semester Exam: 75 Marks (to be mapped in marks)		nd Semester Exam: 75 Marks (to be mapped into 50 arks)	
Objectiv	e:		
1.	To understand the Chomsky hierarchy of languages.		
2.	To learn about regular expressions, finite automata, regular language.		
3.	To learn about context free and context sensitive grammars and its uses.		
4.	To learn about undecidability of languages and Turing machines.		
Pre-Req	uisite:		
1.			
Module	Content	Lecture	
		Hours	
1	Introduction:	02	
	Alphabet, languages and grammars, producti	ons and derivation, Chomsky	
	hierarchy of languages.		
2	Regular languages and finite automata:	10	
	Regular expressions and languages, determin	nistic finite automata (DFA) and	

	Languages, and Computation, Pearson Education Asia.		
5.	John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory,		
4.	John Martin, Introduction to Languages and The Theory of Computation, Tata McGraw Hill		
3.	Michael Sipser, Introduction to the Theory of Computation, PWS Publishing.		
۷.	Springer.	iei science	,
2.	Pearson Education Asia. Dexter C. Kozen, Automata and Computability, Undergraduate Texts in Computation Computati	er Science	
1.	Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation,		
Learnin	ng Resources:		
CO5	decide whether a language is decidable or undecidable		
CO4	discuss the Turing machine and study of their variants and unrestricted grammar	r's	
CO3	design pushdown automata and context free grammar for context-free-languages		
CO2	design finite state machines, regular grammar and expressions for regular langua		
CO1	identify the languages and its hierarchy, Alphabet, languages, regular grammars		tions
	impletion of this course, the learners will be able to-		
	Outcomes:		
	Rice s theorem.		
	Universal Turing machine, the universal and diagonalization languages, PCP,		
5	Undecidability:	02	
	equivalence with deterministic TMs, unrestricted grammars and equivalence with Turing machines, TMs as enumerators.		
	properties, variants of Turing machines, nondeterministic TMs and		
	enumerable) and Turing-decidable (recursive) languages and their closure		
	The basic model for Turing machines (TM), Turing recognizable (recursively		
4	Turing machines:	10	
	and equivalence with CSG.		
	Context-sensitive grammars (CSG) and languages, linear bounded automata		
	not required).		
	languages, deterministic pushdown automata, closure properties of CFLs(proof		
	with CFG, parse trees, ambiguity in CFG, pumping lemma for context-free		
	normal forms, nondeterministic pushdown automata (NPDA) and equivalence		
3	Context-free grammars (CFG) and languages (CFL), Chomsky and Greibach	12	
3	pumping lemma for regular languages, minimization of finite automata. Context-free languages and pushdown automata:	12	
	with finite automata, properties of regular languages (proof not required),		
	epsilon-NFA and equivalence with DFA, regular grammars and equivalence		
	equivalence with regular expressions, nondeterministic finite automata (NFA),		

Name of the course	COMPUTER ARCHITECTURE
Course Code: PC(CS/IT) 408	Semester: 4th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs./week	Mid Term I: 15 Marks

Tutorial:	1 hrs/week	Mid Term II: 15 Marks			
Credit Po	ints: 4	Assignment, Test based on assignments, Surprise tests,			
		Quizzes, Presentations, etc.: 20 Marks			
		End Semester Exam: 50 Marks			
Objective	es:				
1.	To identify different processor architectu	ures and their performance measuremen	t paramete	rs.	
2.	To apply different techniques for improv	ving the performance of processor.			
3.	To develop the concept of multiprocessor architecture.				
4.	To design pipeline processor architecture	e.			
Pre-Requ	iisites:				
1.	Digital Electronics [ES(CS/IT)307]				
2.	Computer Organization [PC(CS/IT)301]				
Module	Content		Lecture		
			Hours		
1	Pipelining Architecture: Introduction:	•	10	30	
	(Revisited), Quantitative techniques in computer design, measuring and				
	reporting performance. Pipelining: Basic	•			
	pipeline, data hazards, control hazards and structural hazards, techniques for				
<u> </u>	handling hazards. Exception handling. P		0	20	
2	Memory Module: Hierarchical memory and locality properties; Cache memory of		9	20	
	cache misses, cache mapping techniques				
3	Instruction-level parallelism: Basic co		9	20	
	RISC Architecture, superscalar, super pi				
	architectures. Array and vector processo	-			
4	Multiprocessor architecture: taxonomy	y of parallel architectures; Centralized	10	30	
	shared-memory architecture: synchroniz				
	interconnection networks. Distributed sh	•			
	computers. Non von Neumann architectu	<u> -</u>			
<u> </u>	computer architectures, systolic architec	tures			
	Dutcomes: upletion of this course students will be able	e to-			
CO1	Explain the concept of pipeline architect		rent technic	nues for	
COI	handling pipeline hazards	care, different nazaras and analyze diffe	rent teenni	1005 101	
CO2	Assess the hierarchical memory technological	ogy			
CO3	Design cache and virtual memory using different mapping techniques				
CO4	Explain multiprocessor architecture and taxonomy of parallel architecture				
CO5	Analyze the concepts of distributed shared-memory architecture, cluster computers				
CO6	Explain the design of Non von Neumann			nputer	
	architectures, systolic architectures.	-		•	
Learning	Resources:				
1.	Advanced Computer Architecture-Kai Hwang & Naresh Jotwani, McGraw Hill				
2.	Computer Architecture and Parallel Processing -Kai Hwang and A. Briggs, McGraw Hill				

3.	Computer Architecture: a quantitative approach - J. L. Hennessy and D. A. Patterson,, Harcourt
	Asia, Singapore.
4.	Computer Organization and Architecture - V. Rajaraman and T. Radhakrishnan PHI Learning Pvt.
	Ltd.
5.	Computer Architecture and Parallel Processing - Hwang and Briggs, TMH.
6.	Computer Architecture and Organization - Hayes, McGraw-Hill.

Name of	e of the course Communication Engineering Lab.			
Course (Code: ESL(CS/IT)410	Semester: 4 th		
Duration	a: 6 months	Maximum Marks: 100		
Teaching	g Scheme	Examination Scheme, Total Marks	s: 100	
Theory:	Nil	Attendance: 10		
Tutorial:	Nil	Preparation of Lab Report : 30		
Practical:	3 hrs./week	Experimental data/ Precision of work	done: 30)
Credit Po	ints: 1.5	Presentation/ analysis of the result : 1	10	
		Viva Voce: 20		
Module	Content	<u> </u>	Hours	Marks
1.	Amplitude Modulation and Demodulation	n	03	
2.	Frequency modulation and Demodulation	1.	03	
3.	Generation and Detection of PAM		03	
4.	Generation and detection of PWM & PPM		06	
5.	Generation and detection of ASK		03	
6.	Generation and detection of FSK		03	
7.	Time Division Multiplexing & Demultiplexing		03	
Course Outcomes:				
After con	npletion of this course the students will be	able to -		
CO1	Compare the Amplitude modulated(AM)	and Frequency modulated (FM) signal	ls.	
CO2	Measure the modulation index of amplitu	de modulated and frequency modulate	d signals.	
CO3	Compare PAM, PWM and PPM signal			
CO4	Compare ASK and FSK signals with AM and FM signals.			
CO5	Identify the multiplexed signals at the	output of TDM system and the corresp	onding	
	demultiplexed signals at the receiver end.			
Learning	g Resources:			
1	Octave online https://octave-online.net/ the open-source alternative for simulation of the above			
1	experiments			

Name of the course:	Algorithm Lab
Course Code: PCL(CS/IT)409	Semester: 4 th
Duration: 6 months	Maximum Marks: 100

Teaching	g Scheme	Examination Scheme			
Theory:N	IIL	Attendance 10			
Tutorial:	NIL	Preparation of Lab Report: 30			
Practical	3 hrs/week	Experimental data/Precision of work do	ne: 30		
Credit Po	int:1.5	Presentation/ analysis of the result: 10			
		Viva Voce:20			
Objectiv					
1.	To understand the working of Fundame	ntal algorithms such as sorting.			
2.		ns based on the underlying data structures	<u> </u>		
3.	To implement various graph algorithms				
4.	To decide which algorithms to employ				
Pre-Req		r			
1.					
Module	Content		Hours	Marks	
1	Comparison of performance of various	sorting algorithms.	03	11202220	
2	Implementation of median order statisti		03		
3	Performance comparison of problem so		03		
	recursion.	rving doing dynamic programming and			
4	Solving 8 queens problem using backtra	acking and brute force method with	03		
	comparison of performance				
5	Solving of Knapsack and job sequencing using greedy approach 03				
6	Implementation of BFS and DFS both recursive and non-recursive version and 03				
_	their performance comparison Implementation of Prim's algorithm and performance comparison based on 03				
7	Implementation of Prim's algorithm and performance comparison based on different data structures used				
8	Implementation of Dijsktra's algorithm and performance comparison based on 03				
	different data structures used				
9	Implementation of Bellman Ford algorithm and all pair shortest path algorithm 03				
10	Implementation of KMP algorithm		03		
Course (Outcomes:				
After cor	npletion of this course, the learners will b				
CO1	Compare performance of various sorting	ng algorithm.			
CO2	Decide which design paradigm to use for	or a particular problem			
CO3	Implement various graph algorithms				
CO4	Apply graph algorithms to real life problems				
CO5	Implement string matching algorithms.				
Learning	g Resources:				
1.	T.H. Cormen, C.E. Leiserson, R. Rivest and C. Stein: Introduction to Algorithms, (Second/Third Edition), PHI, 2009.				
2.	R. Sedgewick: Algorithms in C, Pearson, 2004.				
3.	Steven S Skiena, Algorithm design manual, 2 nd Edition, Springer.				
<u> </u>	, ,	·			

Name of	the course: Prog	gramming Lab Using C++			
Course Code: PCL(CS/IT)410		ester: 4th			
Duration	: 6 months Max	Maximum Marks: 100			
Teaching	mination Scheme				
Theory C	heory Contact Hrs.: Nil Attendance: 10 marks				
Tutorial (Contact Hrs.: Nil Prep	aration of Lab Report: 30 marks			
Practical:	3 hrs/week Expe	erimental data/ precision of work: 30) marks		
Credit Po	int:1.5 Pres	entation / analysis of the result: 30 n	narks		
		voce: 20 marks			
Objective	e:				
1.	To learn the syntax and semantics of the C++1	orogramming language			
2.	To learn how to write inline functions for effic				
3.	To learn how to implement copy constructors a	<u> </u>			
4.	To learn how to design C++ classes for code re				
5.	To understand how C++ improves C with obje				
Pre-Requ	· · · · · · · · · · · · · · · · · · ·	et offented features			
1.	C programming lab				
2.	* * *				
Module	Data structure Lab				
	Content		Hours	Marks	
1	Introduction to the source code writing, com of C++ programme. Writing C++ Programm	•	03		
	line arguments. Basic loop control, functions	_			
	identification of variables with scope resolut				
2	Programme writing on classes, creation of c	-	03		
_	destructors, accessing members, array of obje	-	00		
	members.	,			
3	Programme writing on function overloading	, constructor overloading and	03		
	defaultconstructor, Object passing as function	on arguments and returning of			
	objects from functions.				
4	Programme writing on friend functions, loca	al classes., dynamic initialization	03		
	of objects.		0.2		
5	Programme writing on copy constructor, operators, operator overloading using		03		
6.	Programme writing on derived classes, impl		06		
0.	multilevel inheritance, hierarchical inheritan		00		
	sequence.	<i>E</i>			
7.	Programme writing on multiple inheritances	, constructor calling in derived	03		
	classes, virtual base classes.				
8.	Programme writing on abstract classes, poin	ter to objects, this pointer,	06		
	pointers to derived class.		0.7		
9.	Programme writing on virtual functions and		03		
10.	Programme writing on basic Class and Func				

Course	Outcomes:				
After co	After completion of this course the students will be able to -				
CO1	Define the concept of object oriented programming.				
CO2	Implement the concepts of loop, functions, array & pointers in C++.				
CO3	Analyze the concept of classes/objects, constructor and destructor.				
CO4	Apply the concept of inheritance in programming.				
CO5	Apply the concept of encapsulation in programming.				
CO6	Implement the concept of polymorphism in programming.				
Learnin	Learning Resources:				
1.	The C++ Programming Language (4 th edition) by Bajarne Stroustrup				
2.	C++ Primer 5 th Edition				
3.	A Tour of C++ (C++ in –Depth Series) 1st Edition				
4.	The Design and Evolution of C++.				

Name of the course Course Code: MC(CS/IT)401		ENVIRONMENTAL SCIENCES				
		Semester: 4 th				
Duration	uration: 6 months Maximum Marks: 100					
Teaching	ng Scheme Examination Scheme					
Theory:	2 hrs./week Mid Term Exam I: 15 Marks					
Tutorial:	Nil	Mid Term Exam II: 15 Marks				
Practical	Nil	Assignment.: 20 Marks				
Credit Po	oints: Nil	Semester End Exam: 75 Marks (Two final reckoning i.e., 50 marks)	third weigh	itage for		
Objectiv	e:					
1.	To provide knowledge as to why the study of environment is of great importance					
2.	To learn about problems of various types of pollution (anthropogenic and natural), loss of forest, degradation of land, waste disposal, global warming, depletion of ozone layer and loss of biodiversity i.e. degradation of Mother Earth made by the humans.					
3	To know about "Sustainable development", i.e. meeting human goals along with sustaining the ability of natural systems to provide resources and services for mankind to survive.					
4	To get idea about disaster management to deal with environmental hazards in the events of natural and anthropogenic calamities.					
5	To learn various environmental protection Acts, Environmental Impact Assessment (EIA), which is mandatory for setting up new industries					
Pre-Req	uisite:					
1.	Class 12 standard knowledge of physics, chemistry, biology, mathematics					
Module	Content Lecture Hours					
1	The Multidisciplinary nature of enviro	onmental studies : Definition, scope	2			
	and importance, Need for public awarene	-				
2	The Natural Resources 5					

	a) Natural resources and associated problems		
	Forestresources: Use and over-exploitation, deforestation, mining, dams and		
	their effects on forests and tribal people.		
	Water resources: Use and over-utilization of surface and ground water,		
	floods, drought, conflicts over water, dam's benefits and problems.		
	Mineral Resources: Use and exploitation, environmental effects of		
	extracting and using mineral resources.		
	Food Resources: World food problems, changes caused by agriculture and		
	over grazing, effects of modern agriculture, fertilizers- pesticides		
	problems, water logging, salinity.		
	Energy Resources: Growing energy needs, renewable and non-renewable		
	energy sources, use of alternate energy sources.		
	Land Resources: Land as a resource, land degradation, man induced		
	landslides, soil erosion, and desertification.		
	b) Role of individual in conservation of natural resources.		
	c) Equitable use of resources for sustainable life styles		
3	Eco Systems	5	
	a) Concept of an eco system: Understanding ecosystems, Ecosystem		
	degradation, Resource utilisation		
	b) Structure and function of an eco system.		
	c) Producers, consumers, decomposers.		
	d) Energy flow in the eco systems: Water cycle, Carbon cycle, Oxygen		
	cycle, Nitrogen cycle, Energy cycle, Integration of cycles in nature		
	e) Ecological succession.		
	f) Food chains, food webs and ecological pyramids.		
	g) Introduction, types, characteristic features, structure and function of (1)		
	Forest ecosystem (ii) Grass land ecosystem (iii) Desert ecosystem (iv)		
4	Aquatic eco systems (ponds, streams, lakes, rivers, oceans, estuaries)	-	
4	Biodiversity and its Conservation	5	
	(a) Introduction, Definition: genetic diversity, species diversity and		
	ecosystem diversity.		
	(b) Biogeographically classification of India.		
	(c) Value of biodiversity: consumptive, productive, social, ethical		
	(d) Biodiversity at global, national and local level.		
	(e) India as a mega diversity nation.		
	(f) Hot-spots of biodiversity.		
	(g) Threats to biodiversity: habitats loss, poaching of wild life, man		
	wildlife conflicts.		
	(h) Endangered and endemic species of India.		
	(i) Conservation of biodiversity: in-situ and ex-situ conservation of		
	biodiversity.		
5	Environmental Pollution	6	
	(a) Definition,		
	(b) Causes, effects and control measures of: (1) Air pollution, (2) water		
	pollution, (3) Soil pollution, (4) Marine pollution, (5) Noise pollution, (6)		
	Thermal pollution, (7) Nuclear hazards		
	(c) Solid waste Management: Causes, effects and control measures of		
<u> </u>		ı	

	urban and industrial wastes.				
	(d) Role of an individual in prevention of pollution.				
	(e) Disaster management: Floods, earth quake, cyclone and landslides,				
	industrial safety.				
6	Social issues and the Environment	4			
	(a) Urban problems related to energy				
	(b) Water conservation, rain water harvesting, water shed management				
	(c) Resettlement and rehabilitation of people; its problems and concerns,				
	(d) Climate change, global warming, acid rain, ozone layer depletion,				
	nuclear accidents and holocaust				
	(e) Wasteland reclamation				
	(f) Consumerism and waste products				
	(g) Environment protection Act				
	(h) Air (prevention and control of pollution) Act				
	(i) Water (prevention and control of pollution) Act				
	(j) Wildlife protection act				
	(k) Forest conservation act				
	(l) Issues involved in enforcement of environmental legislations(m)				
	Public				
	awareness				
Course of	outcomes:	•	•		
After cor	npletion of the course the learners will be able to-				
CO 1	apply the knowledge regarding how human beings should make a sustainable living using the				
	Earth's finite resources.				
CO 2	use scientific methods judiciously in preventing causes which damage natural ecosystems.				
CO 3	use the knowledge in protecting endangered and endemic species and conserving biodiversity.				
CO 4	use the knowledge in preventing/minimising various types of pollution, their causes and effects.				
CO 5	apply their knowledge of disaster management in case of natural and anthropogenic calamities.				
CO 6	apply their knowledge of various environment protection acts, "Environment In	mpact Asse	essment"		
	(EIA) as and when required in setting up of new industries as well as expansion	n of industr	ies in		
	which they will be employed				
Learning	g Resources:				
1.	Anubha Kaushik, C.P. Kaushik, Perspectives in environmental studies, New Ag	ge Internat	ional (P)		
	Ltd, Publishers				
2.	Erach Bharucha, Textbook for Environmental Studies, University Grants Com	mission			
3.	D. D. Mishra, Fundamental concepts in Environmental Studies, S Chand & Co Ltd				
4.	Anil Kumar De, Arnab Kumar De, Environment and Ecololgy, New age international (P) Limited, Publishers				
5.	Environmental Chemistry by Anil Kumar De, Wiley Eastern Limited				
6.	Linda D. Williams, Environmental Science demystified, McGRAW-HILL				
7.	Shashi Chawla, A Textbook of Environmental Studies, Tata McGraw Hill Educ	cation Priva	ite		
	Limited.				

B.	Tech.	(IT)	Curriculum,	2018-1	Ç

THIRD YEAR FIRST SEMESTER

	5 th SEMESTER						
SL. NO.	PAPER CODE	PAPER NAME	L	Т	P	CONTACT HRS./WEEK	CREDIT
THE	ORY						
01	PC(CS/IT)511	Operating Systems	3	1	0	4	4
02	PC(CS/IT)512	Database Management System	3	1	0	4	4
03	PC(CS/IT)513	Object Oriented Programming	3	1	0	4	4
04	PEC(IT)501	Elective-I	3	0	0	3	3
05	MC(CS/IT)502	Constitution of India/ (Essence of Indian Traditional Knowledge)	2	0	0	2	0
SESS	SIONAL/PRACTI	CAL					
01	PCL(CS/IT)514	Operating System Lab	0	0	3	3	1.5
02	PCL(CS/IT)515	Database Management System Lab	0	0	3	3	1.5
03	PCL(CS/IT)516	Programming Lab using Java	0	0	3	3	1.5
03	CLA(IT)-5	Comprehensive Laboratory Assessment	0	0	0	0	1
тот	TOTAL		14	3	9	26	20.5

PEC(IT)501

A: Information Theory and Coding

B: Computer Graphics

C: Advanced Computer Architecture

D: Computational Geometry

Name of the course		OPERATING SYSTEMS				
Course Code: PC(CS/IT)511 Duration: 6 months		Semester: 5 th				
		Maximum Marks: 100				
Teaching	g Scheme F	Examination Scheme				
Theory:	3 hrs/week N	Mid Term I Exam:	15 M	Iarks		
Tutorial:	1 hr/week N	Mid Term II Exam:	15 N	Iarks		
Credit Po	ints: 4	Class performance & Attendance:	20 N	Iarks		
		End Semester Exam: 75 Marks (to be mappe	d into 50) marks)		
Objectiv		Tr.				
1.	To understand and analyze operating sy	vstem structures and services				
2.	To understand and determine process n	*				
3.	•	management and file management in Operat	ing Syc	tem		
4.		ent, I/O management and protection & secu				
→.	System.	on, 10 management and protection & secu	iny III C	peranng		
Pre-Requ	1 -					
1.	Data Structures & Algorithms -PC(CS/	/IT)302				
2.	Computer Architecture – PC(CS/IT)40	08				
Module	Content		Hrs.	Marks		
1		S. Operating system services, dual-mode	4	1,161113		
1	operation, Evaluation of O.S, Differen	-				
	timesharing, real-time, distributed, network.					
	Introduction of Process: Concept of process, Process life cycle, Resource					
	utilization, Operations on processes, IP	PC.				
2		m operation, Operating system structure,	4			
	kernel: microkernel, monolithic kernel.	•				
	1 1	ds, User and kernel threads, multithreading				
3	models. CPI Scheduling: Scheduling criteria	Preemptive & non-preemptive scheduling,	10			
		TF, RR, Priority), MLQ scheduling, Multi-				
	processor scheduling.	, , , , , , , , , , , , , , , , , , ,				
	Process Synchronization: Race condi					
	Mutex, Monitor.					
		hods for handling deadlocks, Resource				
1	allocation graph, Banker's algorithm, F	-	8			
4	binding, Swapping, Contiguous	I, Logical vs. physical address, Address memory allocation, Fragmentation,	8			
	Segmentation, Paging.	memory anocation, tragmentation,				
	Virtual Memory: Concept, Dem	and paging, Page replacement, Page				
	replacement algorithms (FCFS, LRU, 0					
	File Systems: File attributes, File sy	estem structure, File access methods, File				
	allocation methods (contiguous, linked					
5		Disk formatting, Boot block, Bad blocks,	3			
	Disk scheduling algorithms (FCFS, SS	TF, SCAN, C-SCAN, LOOK, C-LOOK).				

6	I/O Management: I/O hardware, Polling, Interrupts, DMA, Application I/O 7			
	interface, Kernel I/O subsystem, Spooling and device reservation.			
	Protection & Security: Goals of protection, Security problem, Authentication,			
	Program threats, System threats			
Course (Outcomes:			
After con	npletion of the course students will able to -			
CO1	Analyze different types of operating system.			
CO2	Select different types of kernel in operating system.			
CO3	Apply different mechanism to handle process management.			
CO4	Determine different memory management, file management mechanism to provide better			
	performance to users.			
CO5	Evaluate different disk management policies.			
CO6	Implement different techniques for protection and security.			
Learning	Resources:			
1	Operating System concepts- A. Silberschatz, Greg Gagne, and Peter Baer Galvin- Wiley India			
2	Operating Systems: Internals and Design Principles-William Stallings-Pearson			
3	Operating Systems Concepts & design - Milan Milenkovic, TMH			
4	Tanenbaum A.S. and Woodhull "Operating System Design & Implementation", Pearson			
5	Advanced Concepts in operating Systems - Mukesh Singhal and Niranjan G. Shivaratri, TMH			
6	Operating System Dhamdhere: - TMH			
7	An Introduction to Operating Systems- Dietel H. N- Addison Wesley.			

Name of	the course	Database Management System	
Course C	Code: PC(CS/IT)512	Semester: 5 th	
Duration	: 6 months	Maximum Marks: 100	
Teaching	Scheme	Examination Scheme	
Theory:	3 hrs./week	Mid Term I: 15 Marks	
Tutorial:	1 hr/week	Mid Term II: 15 Marks	
Credit Po	ints: 4	Assignments, Test based on assignments, Surprise tests,	
		Quizzes, Presentations, Attendance etc.: 20 Marks	
End S		End Semester Exam: 75 Marks (to be mapped into 50 marks)	
Objective	bjective:		
1.	Understand the basic concepts and the applications of database systems.		
2.	To learn the fundamentals of data m	odels and to represent a database system using ER diagrams.	
3.	To study SQL and relational database	se design.	
4.	To understand the fundamental concepts of transaction processing, concurrency control techniques		
	and recovery procedures.		
5.	To understand the internal storage structures using different file and indexing techniques which		
	will help in physical DB design.		
Pre-Requ	iisite:		

	ructure & Algorithms PC(CS/IT)302				
2. Discrete	e Mathematics BS(CS/IT)408				
Module Conten	t	Hrs.	Marks		
1 Introdu	iction:	2			
_	t of File system & Database system & their differences, Data abstraction				
& Data	independence in DBMS, Instances & Schemas, Data models, Database				
languag	es (Data definition & Data manipulation languages).				
	Relationship Model:	3			
	oncepts, Types of attributes, Relationship sets, Mapping cardinalities &				
_	ation constraints, Types of Keys., Entity-Relationship diagram (E-R				
_	n), Strong & Weak entity sets, Specialization & Generalization &				
	ation in ER model.				
	nal Model and SQL:	8			
	nental operations in Relational Algebra, Extended Relational Algebra				
	ons, Concept of View, Relational Calculus, Characteristic of SQL, Types				
	L commands (DDL, DML, DCL, TCL), SQL operators & their				
^	ares, Queries, Sub-queries & nested queries, Aggregate Functions,				
	ons on Modification of databases (Insertion, Updation, Deletion).	7			
	ty Constraints and Normalization:	7			
_	t of Foreign Key, Definition of integrity constraints, Types of integrity				
	ents (Domain Constraints, Entity Integrity Constraint, Referential y Constraints, Key Constraints), Functional Dependency, Closure of				
	nal dependency, Armstrong's Axioms, Canonical Cover, Lossless join				
	position & Dependency preservation, Full & Partial & Transitive				
	ency, Prime & Non-prime attribute, Need of Normalization, 1NF, 2NF,				
3NF, Bo					
	ction Management:	13			
	ew of Database transaction concepts, ACID properties, Transaction state,				
	rent executions, Conflicts in Transaction, Serializability, Conflict &				
	erializability, Test for serializability (Precedence Graph), Recoverability,				
Recove	rable, Cascade less & Strict schedules, Shared lock & Exclusive lock,				
Two p	hase locking protocol, Deadlock handling, Deadlock prevention,				
Deadlo	ck detection, Deadlock recovery, Causes of transaction failure, Storage				
structur	e, Log-based recovery, Write Ahead Logging (WAL) protocol,				
Checkp	oints, Shadow paging.				
6 Storage		3			
	evel & Multi level indexing, Structure of B & B ⁺ tree, File organization				
	ee, Hashing techniques.				
Course Outcomes					
	he course, the student will be able to-				
	the concept of Database system.				
CO2 Design	ER-models to represent simple database application scenarios.				
CO3 Implem	ent Relational algebra and SQL queries on database.				
CO4 Apply is	Apply integrity constraints and normalization to improve database design.				
CO5 Solve co	oncurrency problems in database transactions.				

CO6	Explain basic database storage structures and access techniques.				
Learning	earning Resources:				
1.	Henry F. Korth and Silberschatz Abraham, "Database System Concepts", McGraw Hill, ISBN: 9780072283631				
2.	Elmasri Ramez and Navathe Shamkant, "Fundamentals of Database Systems", Pearson Education India, ISBN: 9788131716250				
3.	Ramakrishnan and Gehrke, "Database Management Systems", McGraw-Hill, ISBN: 9780071231510				
4.	Ivan Bayross, "SQL, PL/SQL the Programming Language of Oracle",4 th edition, BPB Publications ISBN: 9788176569644				
5.	C.J. Date, "An Introduction to Database Systems", 7th edition, Pearson, ISBN: 9780321197849				

Objective: 1.	Name of	the course	Object Oriented Programming		
Traching Scheme Theory: 3 Mid Semester Exams: 30 Marks Tutorial: 1 Assignment, Quiz etc.: 20 Marks Credit Points: 4 End Semester Exam: 75 Marks (to be mapped into 50 marks) Objective: 1. To construct models for object-oriented software development 2. To inspect different run time exception cases in a java programme 3. To comprehend and write java programmes with abstraction, code reusability and data securit features 4. To plan concurrent processing scenarios with java multithread programming. Pre-Requisite: 1. Programming for problem solving(ES(CS/IT)204) Module Content 1 Introduction to Object Oriented Programming Concepts Object Oriented Programming language concepts & features, Comparison between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts. 2 Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,	Course Code: PC(CS/IT)513		Semester: 5 st		
Theory: 3	Duration: 6 months		Maximum Marks: 100		
Tutorial: 1 Credit Points: 4 End Semester Exam: 75 Marks (to be mapped into 50 marks) Objective: 1. To construct models for object-oriented software development 2. To inspect different run time exception cases in a java programme 3. To comprehend and write java programmes with abstraction, code reusability and data securit features 4. To plan concurrent processing scenarios with java multithread programming. Pre-Requisite: 1. Programming for problem solving(ES(CS/IT)204) Module Content Introduction to Object Oriented Programming Concepts Object Oriented Programming language concepts & features, Comparison between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts. 2 Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning object with length(), equals() and charAt() method of string object,	Teaching Scheme		Examination Scheme		
Credit Points: 4 End Semester Exam: 75 Marks (to be mapped into 50 marks) Objective: 1. To construct models for object-oriented software development 2. To inspect different run time exception cases in a java programme 3. To comprehend and write java programmes with abstraction, code reusability and data securit features 4. To plan concurrent processing scenarios with java multithread programming. Pre-Requisite: 1. Programming for problem solving(ES(CS/IT)204) Module Content Hrs. Mark Introduction to Object Oriented Programming Concepts Object Oriented Programming language concepts & features, Comparison between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts. 2 Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,	Theory: 3	Theory: 3 Mid Semester Exams: 30 Marks			
Dispective: 1. To construct models for object-oriented software development 2. To inspect different run time exception cases in a java programme 3. To comprehend and write java programmes with abstraction, code reusability and data securit features 4. To plan concurrent processing scenarios with java multithread programming. Pre-Requisite: 1. Programming for problem solving(ES(CS/TT)204) Module Content Hrs. Mark Introduction to Object Oriented Programming Concepts 2 Object Oriented Programming language concepts & features, Comparison between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts. 2 Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,	Tutorial:	1	Assignment, Quiz etc.: 20 Marks		
To construct models for object-oriented software development	Credit Poi	ints: 4	End Semester Exam: 75 Marks (to be mapped into 50 marks)		
2. To inspect different run time exception cases in a java programme 3. To comprehend and write java programmes with abstraction, code reusability and data securit features 4. To plan concurrent processing scenarios with java multithread programming. Pre-Requisite: 1. Programming for problem solving(ES(CS/IT)204) Module Content Hrs. Mark 1 Introduction to Object Oriented Programming Concepts Object Oriented Programming language concepts & features, Comparison between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts. 2 Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,	Objective	:			
3. To comprehend and write java programmes with abstraction, code reusability and data securit features 4. To plan concurrent processing scenarios with java multithread programming. Pre-Requisite: 1. Programming for problem solving(ES(CS/IT)204) Module Content 1 Introduction to Object Oriented Programming Concepts Object Oriented Programming language concepts & features, Comparison between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts. 2 Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,	1.	To construct models for object-orie	ented software development		
features 4. To plan concurrent processing scenarios with java multithread programming. Pre-Requisite: 1. Programming for problem solving(ES(CS/IT)204) Module Content Introduction to Object Oriented Programming Concepts Object Oriented Programming language concepts & features, Comparison between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts. 2 Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,	2.	To inspect different run time except	tion cases in a java programme		
Pre-Requisite:	3.	To comprehend and write java programmes with abstraction, code reusability and data security			security
Pre-Requisite: 1. Programming for problem solving(ES(CS/IT)204) Module Content Hrs. Mark 1 Introduction to Object Oriented Programming Concepts Object Oriented Programming language concepts & features, Comparison between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts. 2 Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,					
1. Programming for problem solving(ES(CS/IT)204) Module Content Introduction to Object Oriented Programming Concepts Object Oriented Programming language concepts & features, Comparison between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts. Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,	4.	To plan concurrent processing scenarios with java multithread programming.			
ModuleContentHrs.Mark1Introduction to Object Oriented Programming Concepts Object Oriented Programming language concepts & features, Comparison between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts.22Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,	Pre-Requ	iisite:			
1 Introduction to Object Oriented Programming Concepts Object Oriented Programming language concepts & features, Comparison between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts. 2 Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,	1.	Programming for problem solving(l	ES(CS/IT)204)		
Object Oriented Programming language concepts & features, Comparison between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts. 2 Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,	Module	Content		Hrs.	Marks
between Object Oriented Programming language and conventional programming languages, Object Oriented Modelling concepts. 2 Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,	1	Introduction to Object Oriented 1	Programming Concepts	2	
programming languages, Object Oriented Modelling concepts. Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,		Object Oriented Programming language concepts & features, Comparison			
Introductory Concept of Java Programming Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,					
Advantages of Java, Data types & variables, Loops, Arrays, Operators, Control statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,		1 0 0 0 0			
statements, constants, methods, Compile time Polymorphism: Method Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,	2			10	
Overloading, Keyboard input operations. Classes & Objects-Defining Classes and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,					
and Creation of objects, Access specifiers, Instance variables and Static variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,					
variables, Constructors, Constructor overloading, Static blocks, Array of objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,					
objects, Use of this keyword, Passing objects as parameter to a method & returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,		1	•		
returning objects from a method, Nested classes & Inner classes concept of string object with length(), equals() and charAt() method of string object,					
string object with length(), equals() and charAt() method of string object,		1			
			•		
Command Line Arguments, garbage collection.					

3	Inheritance and Polymorphism in Java	10	
	Concept of Inheritance, Super classes & Subclasses, Object Modelling in Java:		
	Generalization and Specialization, Constructor calling mechanism in inheritance, Use of super keyword, Runtime Polymorphism: Method		
	Overriding. Use of static keyword in java. Abstract classes & Interfaces-		
	Concept of Abstract classes & Interfaces and their properties, use of final		
	keyword, Dynamic binding in abstract classes and interfaces, Inheritance of		
	interfaces, Nested Abstract classes & Nested Interfaces. Packages in Java-		
	Creation of packages, Importing packages, Member access rules in the aspect of		
	packages.		
4	Exception handling in Java	5	
	Basic concept of exception handling in Java, Different types of exception		
	classes, Concept of try and catch block, Concept of nested try block and		
	multiple catch blocks, throw and throws clause, Concept of finally block,		
	Creation of user defined exception classes.		
5	Multithreading in Java	6	
	Basic concept of multithreading, Concept of main thread and child thread,		
	Thread life cycle, Creation of multiple threads, Thread priorities, Thread		
	synchronization, Inter thread communication, Deadlocks, Suspending &		
	Resuming threads.		
6	Applet Programming in Java	3	
	Basics of applet programming, Applet life cycle, Differences between		
	application & applet programming, Parameter passing through applets, I/O		
	operations in applets.		

Learning	Learning Resources:			
1	Core Java Volume I — Fundamentals (9th Edition) by Cay S Horstmann and Gary Cornell			
2	Rambaugh, James Michael, Blaha, Object Oriented Modelling and Design, Prentice Hall, India			
3	Java: A Beginner's Guide by Herbert Schildt, Oracle Press.			
4	Head First Java by Kathy Sierra and Bert Bates			
5	Deitel and Deitel- "Java How to Program", Pearson Education.			
Course C	Outcomes:			
After com	npletion of this course the students will be able to -			
CO1	Identify Object oriented programming features associated with object oriented modelling concepts			
	related to object-oriented software development.			
CO2	Apply various abstraction and code reusability features of java for more efficient and secure			
	coding along with dynamic resolving of polymorphic behaviours of the entity in combination with			
	java modular programming			
CO3	Implement inheritance, run time polymorphism and abstraction features of java in combination			
	with java modular programming			
CO4	Examine different run time or compile time exceptional cases that may occur in a java program.			
CO5	Organize different parallel processing scenarios with java multithread programming and make use			
	of them in web applications through java applet programming			

Name of the course	INFORMATION THEORY AND CODING
Course Code: PEC(IT)501 A	Semester: 5 th

Duration	: 6 months	laximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theory:	3 hrs./week M	Mid Term I: 15 Marks		
Credit Po	ints: 3	Mid Term II: 15 Marks		
Assignme Quizzes, I		ssignment, Test based on assignments uizzes, Presentations, etc.: 20 Marks and Semester Exam: 75 Marks (converted)	ent, Test based on assignments, Surprise tests, Presentations, etc.: 20 Marks	
Objective		na semester Zham 75 Maries (converted		
1.	To understand basic Information Theory.			
2.	To apply information theory for understa			
3.	To learn different error detection and cor	• •		
		rection codes.		
Pre-Requ				
1.	Mathematics II [BS(CS/IT)205]	40.07		
2.	Communication Engineering [ES(CS/IT)	0409]	Γ	T
Module	Content		Hrs.	Marks
1	Information Theory: Review of probability theory, Uncertainty and Information, Self and Mutual Information, Entropy, Mathematical Properties of the Entropy Function.			
2	Source Coding Theorem: Entropy and Coding, Shannon-Fano Coding, Variable-Length Codes: Unique Decoding, Instantaneous Codes, Construction of Instantaneous Codes, Prefix tree for prefix code, The Kraft Inequality, Huffman codes.			
3	Channel Capacity and Coding: Channel models, channel capacity, channel coding and information capacity theorems, The Shannon limit.			
4	Error Control Coding: Introduction, Matrix description of line Encoding and decoding of Linear Block Codes. Cyclic Codes, Polynomials, Method description of Cyclic codes, Golay codes	-codes, Syndrome Decoding, Hamming for generating Cyclic Codes, Matrix	11	
5	BCH Codes: Properties of BCH codes, minimal poly polynomials, examples of BCH codes, Ro	nomials, generator polynomials, check	5	
6	Convolutional Codes: Introduction, Polynomial description function, Matrix description of Convolutional codes, Trellis codes.	of Convolutional Codes, Generating	5	
Course C	Outcomes:		1	
After con	pletion of this course students will be able	e to-		
CO1	Define the basic notions of information a	and channel capacity.		
CO2	Explain the properties of various error co	ontrol code.		
CO3	Apply information theory to explain char	nnel performance.		
	1			

CO4	Implement linear block codes and cyclic codes for error detection and correction			
CO5	Design BCH & Convolution codes for the improvement of Channel performance against burst			
	errors.			
Learning	Learning Resources:			
1.	Information theory, coding and cryptography - Ranjan Bose; TMH.			
2.	Introduction to Error Control Codes – S Gravano; Oxford.			
3.	Coding and Information Theory – R. W. Hamming; Prentice Hall.			
4.	Information and Coding Theory - G. A. Jones and J. M. Jones ; Springer – Verlag.			
5.	Essentials of Error-Control Coding – Jorge C. Moreira and Patrick G Farrell; Wiley.			

Name of the course		uter Graphics			
Course Code: PEC(IT)501B		ster: 5 th			
Duration: 6 months Maximum Marks: 100					
Teaching	hing Scheme Examination Scheme				
Theory:	3 hrs/week Mid S				
Credit Po	ints: 3 Assign	nment, Quiz etc.: 20 Marks			
	End Somarks	End Semester Exam: 75 Marks (to be mapped into 50			
Objective	,)			
1.	To understand the basic concepts of various of tware.				
2.	To understand different scan conversion algorithm and curve generating algorithm to generate graphics on graphics systems.				
3.	To comprehend various transformation techniques and apply the same on 2D and 3D graphics.				
4.	To describe various color models and lighting conditions.				
5.	To understand various clipping and surface removal techniques.				
Pre-Requ	uisite:				
1.	Mathematics-I(BS(CS/IT)-101)				
2.	Discrete Mathematics(BS(CS/IT)-408)				
Module	Content		Hrs.	Marks	
1	Introduction to Computer Graphics & Gra	phics Systems	4		
	Overview of CG, definitions of CG, types of	f CG, storage tubes display, CRT			
	technologies- Raster Scan Display, Computer graphics software.				
2	Scan Conversion				
	Points & lines, Line drawing algorithms; I				
	algorithm, Circle generating algorithm; Ellip				
2	polygon, fill algorithm, boundary fill algorithm	n, flood fill algorithm.			
3	2D Transformation		6		
	Basic transformations: translation, rotation,	-			
	homogeneous coordinates, transformations	•			
	reflection shear; Transformation of points, line	es, parallel lines, intersecting lines.			

4	Viewing	4	
	Viewing pipeline, Window to Viewport co-ordinate transformation, clipping		
	operations, point clipping, line clipping, clipping circles, polygons & ellipse.		
5	3D Transformation & Viewing	6	
	3D transformations: translation, rotation, scaling & other transformations.		
	Rotation about an arbitrary axis in space, reflection through an arbitrary plane;		
	general parallel projection transformation; clipping, Viewport clipping, 3D		
	viewing, perspectives & Depth Cueing.	4	
6	Curves and Fractals	4	
	Curve representation, surfaces, designs, Bezier curves, B-spline curves, end		
7	conditions for periodic B-spline curves, rational B-spline curves. Hidden Surfaces	4	
7	Depth comparison, Z-buffer algorithm, Back face detection, BSP tree method,	4	
	the Printer's algorithm, scan-line algorithm; Hidden line elimination, wire frame		
	methods, fractal - geometry.		
8	Color & Shading Models	4	
	Introduction, Modeling Light Intensities and Sources, Diffuse Reflection,		
	Lambert's Cosine Law, Specular Reflection, Halftoning, Color Models - RGB		
	Color, CMY Color.		
Learning	Resources:	l .	•
1	Computer Graphics (C version) – Hearn D, Baker M P, Pearson.		
2	Computer Graphics -A programming Approach- Harrington, Steven; McGraw Hi	11	
3	Computer Graphics – principles and practice - Foley, Van Dam, Feiner and Huges	; Pearso	n.
4	Computer Graphics, Multimedia and Animation – Pakhira Malay K; PHI Learning	g Pvt. L	td.
Course O	Outcomes:		
	apletion of this course the students will be able to -		
CO1	Explain basic working principle of graphics systems and hardware.		
CO2	Develop programs to implement drawing, filling and clipping algorithms and solv	e transf	ormation
	and clipping problems.		
CO3	Identify the curves and make use of fractal geometry.		
CO4	Examine operations on 3D graphics system and solve the problems of hidden sur	face rer	noval on
	3D graphic systems.		
CO5	Identify various colour, light, material and shadow models.		

Name of the course	Advanced Computer Architecture
Course Code: PEC(IT)501C	Semester: 5 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme:	Examination Scheme
Theory: 3 hrs/week	Mid Term I: 15 Marks
Credit Points: 3	Mid Term II: 15 Marks
	Assignments, Test based on assignments, Surprise tests,
	Quizzes, Presentations, Attendance etc.: 20 Marks
	End Semester Exam: 75 Marks (converted to 50 Marks)

Objective	e:				
1.	To make students know about the Parallelism concepts in Programming				
2.	To give the students an elaborate idea about the different memory systems and buses.				
3.	To introduce the advanced processor architectures to the students.				
4.	To make the students know about the importance of multiprocessor and multicom	nputers.			
5.	To study about data flow computer architectures.				
Pre-Requ	iisite:				
1.	Principles of digital electronics				
2.	Microprocessor & Microcontroller				
3.	Web Technology				
Module	Content	Hrs.	Marks		
1	Module 1: Introduction to High Performance Computing Pipeline Processing: Pipeline Performance, design of arithmetic pipelines Pipeline hazards – structural hazards, data hazards, control hazards & their solutions Pipeline scheduling Theory: Greedy pipeline scheduling algorithm – Static and Dynamic Pipelining. Parallel Processing, Taxonomy of Parallel Architectures: 1) SISD, 2) SIMD, 3) MIMD, 4) MISD, Amdahl's Law and parallel speed up.	12			
2	Module2: RISC architecture, RISC VS CISC, VLIW architecture Vector and Array Processors, Super-scalar machines, Distributed computing architectures, Data flow architectures.	7			
3	Module3: Interfacing: Peripheral interfacing, Interfacing a microprocessor with memory and various I/O controllers.	5			
4	Module4: Advanced Memory Technology: SRAM, SDRAM, Flash memory, Dual port memory, Cache memory. Memory interleaving, virtual memory.	8			
5	Module5: Introduction to FPGA and Reconfigurable architecture.	4			
Learning	Resources:	l.	1		
1	M. R. Bhujade, "Parallel Computing", Newage International Pvt. Ltd., 1995.				
2	Stallings William, "Computer organization and architecture, designing for performance Hall of India, 1997	rmance"	, Prentice		
3	J. L. Hennessy and D. A. Patterson, "Computer architecture: a quantitative approach", Harcourt Asia, Singapore 1996				
4	Hwang and Briggs, —Computer Architecture and Parallel Processing, TMH.				
5	Hayes, —Computer Architecture and Organization, McGraw-Hill.				
6	Hwang, —Advanced Computer Architecturel, McGraw-Hill.				
7	Kain, —Advanced Computer Architecture: a system Design approach, PHI.				
8	Flynn, —Computer Architecturel, New Age Computer Network				
9	Parhami – Computer Architecture, Oxford University Press				
Course C	Outcomes:				
	cessful completion of this course students will be able to-				
CO1	Demonstrate concepts of parallelism in hardware/software.				

CO2	Discuss memory organization and mapping techniques.
CO3	Describe architectural features of advanced processors.
CO4	Interpret performance of different pipelined processors.
CO5	Explain data flow in arithmetic algorithms
CO6	Development of software to solve computationally intensive problems.

Name of	the course	Computational Geometry		
Course Code: PEC(IT)501D		Semester: 5 th		
	: 6 months	Maximum Marks: 100		
		Examination Scheme		
Theory: 3 hrs./week Mid Term I: 15 Marks				
Credit 1	omis. 3	Mid Term II: 15 Marks		
		Assignment, Test based on assignment Quizzes, Presentations, Attendance etc.:	_	
		End Semester Exam: 75 Marks (converte		
Objective	es:	`		
1.	To implement convex hull, triangulation	on, and closest pair algorithms		
2.	To understand and apply Voronoi diag			
3.	To assess various data structures associ			
4	To apply visibility and robot motion p	<u> </u>		
Pre-Requ		anning argorithms.		
1.				
2.	Data structure and Algorithms [PC(CS/IT)302] Design and Analysis of Algorithm [PC(CS/IT)406]			
	• •	(C5/11)400]	TT	Mania
Module	Content		Hrs.	Marks
1	_	naries and Convex Hull: Introduction, s: Convex Hull Algorithms in the Plane -	10	
	-	rch, Divide and Conquer Algorithm. Line		
		veep), Doubly linked edge list, Overlay		
		Triangulation (Triangulating monotone		
	polygons, Partitioning monotone polyg			
2	Voronoi diagram: Algorithms, closes	t pair problems. Delaunay triangulations:	7	
	algorithms (divide-and-conquer, flip, in	ncremental), duality of Voronoi diagrams,		
	properties (min-max angle).			
3	Searching: Orthogonal Search: Geometric data structures; Range search (Quad-		9	
		ange searching (Range tree, fractional		
		egment tree, interval tree, priority search		
	Geometric searching point-location	2d linear programming with prune and		
	search.	20 mea programming with prime and		
4		trong visibility, visibility with reflections,	6	
	art-gallery problems.	- , ,		
	Arrangements: Zones (Duality, line	arrangements; many-faces complexity,		

	incremental algorithm, zone theorem), algorithms.			
5	Robot Motion Planning: Geometric Applications: Robot Motion Planning (Trapezoidal Maps, point robots, Translational Motion Planning), Computing the Visibility Graph.	4		
Learning	g Resources:			
1	M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational	Geometr	y:	
	Algorithms and Applications. Springer-Verlag, 2nd edition, 2000.			
2	Franco P. Preparata and Michael Ian Shamos, Computational geometry: An Introduction, 1 st			
	edition, Springer-Verlag New York.			
Course (Outcomes:			
After suc	cessful completion of this course students will be able to-			
CO1	Implement Convex hulls, line segment, and triangulation algorithms			
CO2	Illustrate Voronoi diagrams, Delaunay triangulation, and closest pair of points.			
CO3	Identify appropriate Range Search data structures for various range queries.			
CO4	Identify appropriate Range Search data structures for various range queries.			
CO5	Devise various Robot motion planning algorithms.			

Name of	the course:	Constitution of Indian		
Course C	Code: MC(CS/IT)502	Semester: 5 th		
Duration: 6 months		Maximum Marks: 100		
Teaching	Teaching Scheme Examination Scheme			
Theory C	Theory Contact Hrs.: 2 hrs./week Mid Semester-1 Exam: 15 Marks			
Credit Po	int: (Non credit compulsory)	Mid Semester-2 Exam: 15 Marks		
		Assignment, Quiz & class attendance: 20	Marks	
	End Semester Exam: 75 Marks (to be mappe		ed into 5	0 marks)
Objective	e:			
1.	To understand the structure of the Indian Constitution.			
2.	To learn about the Nature-Specialty a	and Proposal Of Indian Constitution.		
3.	To Describe the Centre- State relation	nship and the role of government administrat	ion.	
4.	To gain knowledge about the Indian	Jurisdiction and conceptualization of social	reforms	that lead
	to revolution in India.			
Pre-Requ	uisite:			
1.	Constitution of India(MC(CS/IT)502	[PC (CS/IT)-513])		
Module	Content		Hrs.	Marks
1	Indian Constitution:		05	
	Sources and constitutional history, Features: Citizenship, Preamble.			
2	Fundamental Rights & Duties:			
	Fundamental Rights, Right On: Equality, Freedom, Against Exploitation,			
	Freedom of Religion, Cultural and Educational Rights, Constitutional			
	Remedies. Directive Principles of Sta	ate Policy. Fundamental Duties.		
3	Structure of the Indian Union and	its administration:	08	

	Structure of the Indian Union: Federalism, Centre- State relationship, President:		
	Role, power and position, PM and Council of ministerrs, Cabinet and Central		
	Secretariat, Lok Sabha, Rajya Sabha. State government and its administration:		
	Governor: Role and Position, CM and Council of ministers, State Secretariat:		
	Organisation, Structure and Functions.		
4	Jurisdiction:	06	
	Supreme court: Organization of supreme court, procedure, jurisdiction and		
	power of the supreme court. High court: Organization of high court, procedure,		
	jurisdiction and power of high court. Subordinate courts: constitutional		
	provision, structure and jurisdiction. National legal services authority, gram		
	nyayalays. Public interest litigation (PIL): meaning of PIL, features ,scope ,		
5	principle , guidelines for admitting PIL. Local Administration:	05	
3	District's Administration head: Role and Importance, Municipalities:	03	
	Introduction, Mayor and role of Elected Representative, CEO of Municipal		
	Corporation, Pachayati raj: Introduction, PRI: ZilaPachayat, Elected officials		
	and their roles, CEO ZilaPachayat: Position and role, Block level:		
	Organizational Hierarchy (Different departments), Village level: Role of		
	Elected and Appointed officials, Importance of grass root democracy.		
Course (Outcomes:	•	
After con	npletion of the course students will able to -		
CO1	explain about different features of Indian constitution.		
CO2	identify the power and functioning of Union, state and local self-government.		
CO3	explain about jurisdiction and function of Indian Judiciary.		
CO4	applying the authority to redress a problem in the profession and in the society.		
CO5	using the basics of PIL and guideline for admission of PIL along with the fur administration starting from block to municipal Corporation.	nctioning	of local
CO6	demonstrate the intellectual origins of the framework of argument th	at inform	ned the
	conceptualization of social reforms leading to revolution in India.		
Learning	Resources:		
1.	Indian polity, M, Laxmikanth, MC Graw Hill education, 5th Edition.		
2.	Indian Constitution,M P Jain,8 th Edition.		
3.	Indian Constitution and Administration, Latika Shekhar.		
4.	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.		
5.	Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition	, 2015. m	nunicipal
	Corporation.		

Name of the course	Operating System Lab
Course Code:	Semester: 5 th
Duration: 6 months	Maximum marks:100
Teaching Scheme	Examination scheme:
Teaching Scheme Theory: Nil	Examination scheme: Attendance: 10 marks

Practical:	3 hrs/week	Experimental data/ Precision of work done: 30 marks	
Credit Po	ints:1.5	Presentation / analysis of the result: 30 marks	
		Viva voce: 20 marks	
Module	Content		
1.	Familiarization of Linux Commands.		
2.	Shell in UNIX. Different types of Shel	l in UNIX.	
	Creating a bash shell script, making a	script executable, shell syntax (variables, conditions, control	
	structures, functions, commands).		
3.	Implementation of CPU scheduling alg	gorithms.	
4.	Implementation of classical problems i	in process synchronization.	
5.	Implementation of deadlock handling	techniques.	
6.	Implementation of memory manageme	ent techniques.	
7.	Operations on Processes, signals, Piper	s and system calls.	
Course C	Outcomes:		
After con	pletion of the course students will able	to -	
CO1	Review commands in UNIX.		
CO2	Write programs using shell scripts.		
CO3	Implement different process management	nent mechanisms.	
CO4	Implement different memory manager	ment techniques.	
CO5	Evaluate different system managemen	t mechanisms.	
Learning	Resources:		
1	Linux Command Line and Shell Scrip	oting Bible- Christine Bresnahan and Richard BLUM- Wiley	
	India		
2	_	perating System and Command Line Guide- Jason Cannon-	
	CreateSpace Independent Publishing I	Platform	
3	Mastering Linux Administration- Alex	kandru Calcatinge, Julian Balog Packt	

Name	of the course	DATABASE MANAGEMENT SYSTEM LAB
Cours	e Code: PCL(CS/IT)515	Semester: 5th
Durati	ion: 6 months	Maximum Marks: 100
Teach	ing Scheme	Examination Scheme, Total Marks: 100
Theory	y: Nil	Attendance: 10
Tutoria	al: Nil	Preparation of Lab Report : 30
Practical: 3 hrs./week		Experimental data/ Precision of work done: 30
Credit	Points: 1.5	Presentation/ analysis of the result : 10
		Viva Voce: 20
Object	tive:	
1.	Describe the basics of SQL	
2.	Construct queries using SQL	
3.	Demonstrate the use of constraints	
	•	

4.	Implement PL/SQL Concepts and Constructs					
Pre-Req	uisite					
1.	Programming for Problem Solving Laboratory ESL(CS/IT)205					
2.	Discrete Mathematics BS(CS/IT)408					
Module	Content Hrs. M					
1.	Structured Query Language: Creating a Database, Creating a Table, Specifying 03 Relational Data Types, Specifying Constraints, Creating Indexes					
2.	Table and Record Handling: INSERT statement, INSERT INTO SELECT statement, DELETE, UPDATE, TRUNCATE statements, DROP, ALTER statements	06				
3.	Retrieving Data from a Database: The SELECT statement, Using the WHERE clause, Using Logical Operators in the WHERE clause, Using IN, BETWEEN, LIKE, ORDER BY, GROUP BY and HAVING Clause, Using Aggregate Functions, Combining Tables using JOINS, Sub queries	09				
4.	Database Management: Creating Views, Creating Column Aliases, Creating Database Users, Using GRANT and REVOKE	06				
5.	PL/SQL Concepts and Constructs: Introduction Of PL/SQL, Structure of basic PL/SQL Structure, Conditional statements, Basic loops, Cursors in Oracle PL/SQL	06				
Course (Outcome:		-			
L	npletion of this course the students will be able to -					
CO1	Construct Databases and Tables					
CO2	Manipulate Tables and Records					
CO3	Compose queries to retrieve data from a Database					
CO4	Facilitate the management of a Database					
CO5	Implement conditional statements, basic loops and cursors in PL/SQL					
Learning	g Resources:					
1	Ivan Bayross, SQL, PL/SQL the Programming Language of Oracle, BPB Publications, ISBN: 9788176569644					
2	Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Database System Concep ISBN: 9789332901384	ts, McG	raw-Hill,			

Name of	the course	Programming Lab Using Java
Course C	Code: PCL(CS/IT)516	Semester: 5 st
Duration	a: 6 months	Maximum Marks: 100
Teaching	g Scheme	Examination Scheme
Practical:	3 hrs/week	Assignments and Quiz: 100 Marks
Credit Po	ints: 1.5	
Objectiv	e:	
1.	To construct models for object-oriented software development	
2.	To handle different run time exception cases in a java programme	

3.	To write java programmes with abstraction, code reusability and data security for	eatures	
4.	To plan concurrent processing scenarios with java multithread programming.		
Pre-Requ	nisite:		
1.			
Module	Content	Hrs.	Marks
1	Programming with java classes involving data members having various access		
	protection, class methods, constructors, overloading features, this and final		
	keyword, static block, static variables and methods.		
2	Use of array of objects, passing of object in method and returning of object		
	form method, use of string handling functions—length (), equals (), charAt(),		
3	keyboard input operations, command line arguments. Program implementation for nested/inner classes, name conflict resolving for		
3	inner and outer classes.		
4	Program implementation for abstract class, interface, inheriting multiple		
	interfaces in a single class, extending multiple interfaces within a single		
	interface, combined inheritance of both abstract class and interface. Use of		
	dynamic method dispatch for abstract class and interface implementation.		
5	Implementation of nested abstract class and interface combinations. Resolving		
	name conflict scenarios for the combined inheritance of abstract class and		
6	interface. Designing program modules with creation and accessing of packages.		
7	Handling exception with try, catch and finally. Adoption of throw, throws and		
8	user defined exception. Program writing for creation of multiple threads, thread synchronization, inter		
O	thread communication.		
9	Applet program execution with I/O operation, use of repaint () method.		
Learning	g Resources:		
1	Core Java Volume I — Fundamentals (9th Edition) by Cay S Horstmann and Ga	ary Cornel	1
2	Harvey Deitel and Paul Deitel, Java How to Program, Early Objects, Global Edi	tion, Pears	son
	Education, ISBN-13: 9781292223902		
3	Java: A Beginner's Guide by Herbert Schildt, Oracle Press.		
4	Head First Java by Kathy Sierra and Bert Bates		
5	Deitel and Deitel- "Java How to Program", Pearson Education.		
	Outcomes:		
	repletion of this course the students will be able to -	d	
CO1	Implement java programs with data protection, method overloading, object inde	penaent cl	ass
CO2	member accessing features and string handling operations. Demonstrate nested structuring of java classes and their name conflict resolving	iccuec	
CO2			ation
COS	Implement inheritance, run time polymorphism and abstraction features of java with java modular programming	iii combina	atiOH
CO4	Solve different run time and user inducted exception cases in the java program		
CO5	Organize parallel processing scenarios with java multithread programming and i	incorporate	e them in
	web applications through java applet programming	meorporau	

B.	Tech.	(IT)	Curriculum,	2018-19

THIRD YEAR SECOND SEMESTER

	6 th SEMESTER						
SL. NO.	PAPER CODE	PAPER NAME	L	Т	P	CONTACT HRS./WEEK	CREDIT
THE	ORY						
01	PC(CS/IT)617	Computer Networks	3	1	0	4	4
02	PC(CS/IT)618	Compiler Design	3	0	0	3	3
03	PEC(IT)602	Elective-II	3	0	0	3	3
04	OEC(IT/CS)601	Open Elective-I	3	0	0	3	3
05	HS(CS/IT)604	Industrial Management (Organizational Behavior/ Finance & Accounting	3	0	0	3	3
SESS	SIONAL/PRACTI	CAL					
01	PCL(CS/IT)619	Computer Network lab	0	0	3	3	1.5
02	PROJ(IT)601	Project 1	0	0	6	6	3
03	CLA(IT)-6	Comprehensive Laboratory Assessment	0	0	0	0	1
тот	AL		15	1	9	25	21.5

PEC(IT)602

A: Software Engineering

B: Cryptography and Network Security

C: Multimedia Systems

D: Wireless Communication

OEC(IT/CS)601

A: Optimization Techniques

B: Digital Communication

C: Cyber Law and Security Policy

D: Control System

Name of	the course	Computer Network		
Course C	ode: PC(CS/IT)617	Semester: 6 th		
Duration	: 6 months	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3	3 hrs/week	Two Mid term Exam: 30 Marks		
Tutorial:	1 hours/week	Assignment & Quiz: 10 Marks		
Credit Poi	ints: 4	Term paper: 05 Marks		
		Presentation on selected topics: 05 Marks		
		End Semester Exam: 75 Marks (to be mappe	ed into 50) marks)
Objective	:: ::			
1.	To study the concept of computer ne	etwork and protocol suite		
2.	To study Physical and data link laye	r and related hardware and protocol		
3.	To study network layer, routing prot	tocols, IP addressing		
4.	To study transport layer, TCP and s	ocket		
5.	To study Application layer and netw			
Pre-Requ	isite	·		
1.				
Module	Content		Hrs.	Marks
1	Introduction: Overview of Data	Communication and Networking; Layered	4	7
	Network Architecture; Mode of co	ommunication, topology, Data and Signal;		
	_	uided, categories of network (LAN, MAN,		
		ocols and standards; Reference models: OSI		
	reference model, TCP/IP reference r			
2	-	edia: Guided, Unguided; switching: time	4	10
	Repeater and hub, Multiplexing: TD	n, TDM bus, Banyan switch; MODEM,		
3		s sub layer: MAC address and LLC; Error	8	20
3	•	character and bit stuffing), error detection &		20
		s: Stop & wait ARQ, Go-Back- N ARQ,		
	Selective repeat ARQ, HDLC; Poin	t to Point Protocol, LCP, NCP, Token Ring;		
	Access mechanism: Reservation,	Polling, Random access: Pure ALOHA,		
		CD, CSMA/CA, TDMA, FDMA, CDMA,		
	Traditional Ethernet, fast Ethernet.			
4		& devices: Bridges, Switches, Router,	10	20
		ing (IPV4, IPv6), masking, Classful and		
	Classiase Addressing Subnetting	NAT: Routing : Intra and Inter Domain		
1		NAT; Routing: Intra and Inter Domain		
	Routing, Unicast, Multicast Broad	deast routing. static vs. dynamic routing,		
	Routing, Unicast, Multicast Broad Unicast Routing Protocols: RIP, OS	deast routing. static vs. dynamic routing, PF, BGP; Other Protocols: ARP and RARP,		
	Routing, Unicast, Multicast Broad Unicast Routing Protocols: RIP, OS IP, ICMP, IPV6; Mapping between	deast routing. static vs. dynamic routing,		

5	Transport layer: Process to Process delivery; UDP; TCP, Features, Segment,	8	17		
	Three-Way Handshaking, socket and port addressing, Flow Control, Error				
	Control, Congestion Control: Open Loop, Closed Loop, choke packets; Quality				
	of service: techniques to improve QoS: Leaky bucket algorithm, Token bucket				
	algorithm.				
6	Application Layer: Introduction to DNS, SMTP, SNMP, FTP, HTTP &	5	10		
	WWW;				
7	Security: Attacks, Cryptography, Firewalls, IDS & IPS, Malware, IP and transport layer security, DMZ.	3	10		
8	Modern topics: ISDN services & ATM, DSL technology, Wireless LAN,	2	6		
	Bluetooth, VPN.				
Course (Outcomes:				
After con	npletion of the course students will able to -				
CO1	Investigate two protocol suits and different topologies, transmission media of co	mputer	network		
CO2	Investigate different random and controlled access mechanism, flow and error control				
CO3	Asses different routing models for computer network and IP addressing				
CO4	Asses quality of services (Qos) in Transport layer and services using client server	paradig	m.		
CO5	Investigate different security protocols and different encryption mechanism				
CO6	solution of Real life problems for designing IP addressing of net and subnet of r	network o	cluster		
Learning	g Resources:				
1.	B. A. Forouzan – "Data Communications and Networking (3rd Ed.) " – TMH				
2.	A. S. Tanenbaum – "Computer Networks (4th Ed.)" – Pearson Education/PHI				
3.	W. Stallings – "Data and Computer Communications (5th Ed.)" – PHI/ Pearson E	ducation	l		
4.	Black, Data & Computer Communication, PHI				
5.	Kurose and Rose - "Computer networking -A top down approach featuring the in	ternet" -	- Pearson		
	Education				

Name of the course Software Engineer		Software Engineering	
Cours	se Code: PEC(IT)602A	Semester: 6 th	
Durat	ion: 6 months	Maximum Marks: 100	
Teach	ing Scheme	Examination Scheme	
Theory	y: 3 hrs/week	Mid Term I Exam:	15 Marks
Credit	Points: 3	Mid Term II Exam:	15 Marks
		Class performance & Attendance:	20 Marks
		End Semester Exam: 75 Marks (to be	mapped into 50 marks)
Objec	tive:	,	
1.	To understand different softw	ware process models.	
2.	To analyze software testing a	activities.	
3.	To determine software reliability and quality.		
4.	To assess different tools for software project management.		
Pre-R	equisite:		

1.	Data Structures & Algorithms -PC(CS/IT)302		
2.	Mathematics III-BS(CS/IT)307		
Module	Content	Hrs.	Marks
1	Information System: Software Engineering – Objectives, Definitions, Software development life cycle, Software Process models – Waterfall Model, Spiral model, Agile model. Software Requirements (SRS), Feasibility Analysis.	6	
2	Software Design: Context diagram and DFD, Physical and Logical DFDs, Data Dictionary, ER diagrams, Decision tree, decision table and Structure chart, Structured English.	4	
3	Software Testing: Levels of Testing, White-box and Black-box Testing, Test Case Generation, Acceptance Testing, Software Validation, Regression Testing, Mutation Analysis, Cyclomatic complexity.	10	
4	Reliability: Reliability concept, Software Reliability, Hazard, MTTF, MTBF, Repair and Availability.	4	
5	Software Quality: Quality attributes, Risk Management, McCall's quality factors, Software Quality Assurance, quality standards, Total Quality Management.	4	
6	Software Project Management: Software Project Planning, Project Scheduling, Software Configuration Management, Cost estimation-COCOMO, function point analysis, Halstead metric, Project management tools- WBS, Gantt chart, PERT, Critical Path Method.	8	
Course O	utcome:		1
After com	npletion of the course students will able to -		
CO1	Select different software development process models.		
CO2	Develop the software architecture/design using design tools.		
CO3	Apply different testing and debugging techniques.		
CO4	Analyze software risks, reliability and failure.		
CO5	Determine the concept software quality.		
CO6	Implement different tools for software project management.		
Learning	Resources:		
1	Software Engineering: A practitioner's approach—R.G. Pressman (TMH)		
2	Software Engineering- I. SomerVille(Pearson Education)		
3	Software Engineering- Rajib Mall (PHI)		
4	Software Engineering –Agarwal and Agarwal (PHI)		
5	Software Engineering- Pankaj Jalote (Wiley-India)		
6	Fundamentals of Software Engineering- C. Ghezzi, M. Jazayeri and D. Mandrioli(l	PHI)	
7	Software Engineering Fundamentals- Behforooz(OUP)	-	

Name of	the course Cı	ryptography and Network Security		
Course C	lode: PEC(IT)602B Se	emester: 6 th		
Duration	uration: 6 months Maximum Marks: 100			
Teaching	Γeaching Scheme Examination Scheme			
_	Theory: 3 hrs./week Mid Term I: 15 Marks			
_	Credit Points: 3 Mid Term II: 15 Marks			
		ssignment, Test based on assignments, Sur	prise tes	its.
		uizzes, Presentations, Attendance etc.: 20	•	-
	Er	nd Semester Exam: 75 Marks (to be mappe	d into 5	0 marks)
Objective):			
1.	To learn the main concepts of cryptogra	aphy, its services and classical encryption t	echniqu	es.
2.	1 71 5	ot, Festal structure and symmetric key cryp		
3.	To study the number theory and basic p		0 1 3	<u></u>
4.	To study Message Authentication Code			
5.	To learn Key distribution problem, Kerl			
6.	•	ation, System security and Web security.		
Pre-Requ	• •	ation, System security and web security.		
1.	Computer Network (PC(CS/IT)617)			36.3
Module	Content		Hrs.	Marks
1		curity, attacks, services and mechanism,	4	
		ventional encryption model, classical phers and transposition ciphers, stream		
	and block ciphers, Cryptanalysis, Stegar			
2		Cipher principle, Feistel structure, The	8	
	Data Encryption Standard, Strength of	DES, Triple DES, Block Cipher modes		
	1 -	ecryption, RC5 algorithm, Overview of		
	AES.			
3		rinciples of Public key Cryptography	8	
	1 1 1	nler's Totient Function, Fermat's Little ended Euclidean Algorithm. RSA		
	Cryptosystem. Elliptic curve cryptograp	2		
4		Function: Authentication requirements,	5	
	authentication functions, message authe	entication code, Hash functions- MD5 &		
		Digital Signatures and digital signature		
	standards (DSS).			
5		ocols: Key Distribution Centre, Diffie-	5	
	Hellman Key Agreement, Man in the m	beros. Certificate based Authentication-		
	X.509.	beros. Certificate based Authentication-		
	Electronic mail security: Pretty Good Pr	rivacy, S/MIME.		
6		work, AH, ESP. Web Security: SSL and	6	
	TLS, Secure Electronic Transaction.			
	Firewalls: Packet filters, Application-Le			•

Learning	Resources:
1	Behrouz A. Forouzan, Cryptography and Network Security, Tata McGraw-Hill. 2010
2	William Stallings, Cryptography and Network Security, Pearson Education, 2014
3	Charlie Kaufman, Radia Perlman, Mike Speciner, Network Security, PHI, 2002
4	Johannes A. Buchmann, Introduction to Cryptography, Springer-Verlag.
5	Atul Kahate, Cryptography & Network Security, TMH.
6	B. Schneier, Applied Cryptography, Protocols, Algorithms, and Source Code in C, 2nd Edn, Wiley, 1995.
Course C	Outcomes:
After con	appletion of this course students will be able to-
CO1	Explain the services of cryptography and various classical encryption techniques.
CO2	Illustrate Feistel structure and write Symmetric key cryptographic algorithms.
CO3	Explain number theory and Asymmetric key cryptographic algorithms.
CO4	Apply Cryptographic Hash Functions and verify messages using well known signature generation techniques.
CO5	Analyse Key Management, Authentication and Email Security.
CO6	Evaluate Security Association, Transport Layer and Application layer Security.

Name of t	the course	Multimedia Systems			
Course C	ode: PEC(IT) 602C	Semester: 6 th			
Duration	: 6 months	Maximum Marks: 100			
Teaching	Scheme	Examination Scheme			
Theory: 3	neory: 3 hrs./week Mid Semester-1 Exam: 15 Marks				
Credit Poi	ints: 3	Mid Semester-2 Exam: 15 Marks			
		Assignment, Quiz & class attendance: 20	Marks		
	End Semester Exam: 75 Marks (to be mappe			0 marks)	
Objective	: :				
1.	To study the concept of multimedia				
2.	To study text, audio, computer graphi	ics as components of multimedia			
3.	To study animation, image and video	processing in multimedia			
4.	To study lossless and lossy compressi	ion techniques			
5.	To study multimedia database				
Pre-Requ	iisite:				
1.	Communication Engineering EC(CS/	TT)409			
Module	Content		Hrs.	Marks	
1	Introduction: : Multimedia Comp	ponents and Structure, Hardware and	3	8	
	Software Specifications, Application	n Domains, uses of multimedia, Analog			
	and digital media, digitization, Visu	al Display Systems: Cathode Ray Tube,			
	Liquid Crystal Display, Plasma Displ	ay			
2	Text: Types of Text, Font, ASCII Cl	haracter Set, Unicode, File Formats, Text	3	10	

	compression, Text file format		
3	Audio: Concept of Sound, Components of audio systems, Data acquisition, Sampling and Quantization, Audio file formats, Audio tools, Audio processing software, MIDI	3	10
4	Image : Image acquisition and representation, Colour models (Device Dependent and Device Independent), Image Processing, File Formats	5	12
5	Computer Graphics: Components of graphics system, 2D and 3D modelling, Graphics file formats, Fractals	3	10
6	Animation: Principles of animation, Computer based animation, 3D animation, Rendering Algorithms, File format, Animation software	4	10
7	Video: Video Frame, Frame Rate, Composite video signal NTSC, PAL and SECAM Video Standards, Formats, Digital Video, Steps of Video Processing and Software	4	10
8	Compression: Lossy and Lossless Compression, Run Length encoding, Huffman Encoding, Arithmetic Encoding, Differential Pulse Code Modulation, JPEG image compression standard, MPEG video compression, H.261	4	10
9	Synchronization : Intramedia and Intermedia Synchronization, Jitter, Skew, Delay, Error rate, Quality of Service	4	8
10	Image and Video Database: Image representation, segmentation, similarity based retrieval, image retrieval by color, shape and texture; indexing- k-d trees, R-trees, quad trees; Case studies- QBIC, Virage, Video Content, querying, video segmentation, indexing	5	12
Learning	g Resources:	<u>I</u>	<u> </u>
1.	Ralf Steinmetz and Klara Nahrstedt, Multimedia: Computing, Communication Pearson Ed.	ıs & App	olications,
2.	Parekh Ranjan, Principles of Multimedia, Mc Graw Hill. 3. Koegel Buford, Mc Pearson Ed.	ultimedia	Systems,
3.	Ralf Steinmetz and Klara Nahrstedt, Multimedia Fundamentals: Vol. 1- Media C Processing, PHI.	Coding and	d Content
4.	Nalin K. Sharda, Multimedia Information System, PHI.		
5.	J. Jeffcoate , Multimedia in Practice: Technology and Application , PHI.		
	Outcomes:		
After con	Investigate different multimedia systems, components and applications		
CO2	Investigate different multimedia systems, components and applications Assess different multimedia components like text, audio, video and image.		
CO2	Design animation using multimedia knowledge		
CO4	Investigate colour model and conversion		
CO5	Apply computer graphics for multimedia		
CO6	Explore different database and their architecture used in multimedia		
CO7	Design different multimedia applications		
207	Design different materinean approactions		

Name of	the course: WIRI	ELESS COMMUNICATION		
Course Code: PEC(IT)602D		Semester: 6 th		
Duration: 6 months		mum Marks: 100		
Teaching Scheme Examination Scheme				
Theory Contact Hrs.: 3 hrs/week		lemester-1 Exam: 15 Marks		
Tutorial Contact Hrs.: Nil Mid Semester-2 Exam: 15 Marks				
Credit Point: 3 Assignment, Quiz & class attendance		nment, Quiz & class attendance: 20	Marks	
	End S	Semester Exam: 75 Marks (to be	mapped	into 50
	marks)		
Objectiv	e:			
1.	To analyze different communication technological	ogies used in wireless communication	n systems	S.
2.	To study cellular communication systems.			
3.	To study wireless local area networks			
4.	To compare different modern wireless commu	unication systems		
Pre-Requ	uisite:			
1.	Communication Engineering(ES(CS/IT)409)			
Module	Content		Hrs.	Marks
1.	Introduction to wireless communication and wireless network, Examples & comparison of different wireless communication systems, Evolution of Mobile radio communication, Multiplexing, Modulation Techniques, Spread Spectrum			20
2.	modulation(FHSS, DSSS), Multiple access techniques(FDMA,TDMA,CDMA). Cellular concept and architecture: GSM Network Architecture, GSM call set up procedure, Authentication and security, Routing of a call to a mobile subscriber. CDMA based cellular network		10	30
3.	Fundamentals of Wireless Networks (WLAN) WLAN transmission Technology, WLAN system architecture, IEEE 802.11standard. Wireless Media Access Control: Wireless Issues, ALOHA, Carrier Sense Multiple Accesses with Collision Avoidance, Mobile IP and Wireless Access Protocol.			20
4.	Introduction to satellite communication, Sat transponder, satellite link(uplink & downlink)		04	10
5.	Recent advances in wireless communication: Wide Band (UWB) 06 communication, Wireless Fidelity (Wi-Fi) systems; Wireless Sensor networks, Bluetooth technology, Cognitive Radio Network			20
	Outcomes:			•
	mpletion of this course the students will be able			
CO1	apply the basic concepts of communication Engineering to study different wireless communication system.			
CO2	apply the basic knowledge of computer netwo	•	cation net	works
CO3	explain the satellite communication network a	and the link parameters		
CO4	explain different modulation and multiple access technologies applied to different wireless communication systems			
CO5	analyze the evolution of modern communicati	on systems and their features.		

Learning	Learning Resources:		
1.	T. S. Rappaport, "Wireless Communications: Principles & Practice," Prentice-Hall.		
2.	I.Saha Misra, "Wireless Communications and Networks, 3G and beyond" TMH.		
3.	W.Stallings, "Wireless Communications and Networks" PHI.		
4.	Satellite Communication – D.C Agarwal, Khanna Publications, 5th Ed		

Name of	the course (OPTIMIZATION TECHNIQUES		
Course Code: OEC(IT/CS)601A		Semester: 6 th		
Duration: 6 months		Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theory: 3 hrs./week		Mid Term I: 15 Marks		
Credit Po	ints: 3	Mid Term II: 15 Marks		
		Assignments, Test based on assignments,	, Surpri	se tests,
		Quizzes, Presentations, Attendance etc.: 20		
		End Semester Exam: 75 Marks (to be mappe	d into 50	0 marks)
Objectiv	e:			
1.	To understand the basic concepts of op-	ptimization and solve linear programming pr	oblems.	
2.	To introduce the concept of game theo	ory		
3.	To execute Johnson's algorithm to sol-	ve scheduling problem		
4.	To understand basic concept of queuing theory			
5.	To calculate project implementation time using both probabilistic and deterministic method.			d.
6.	To solve problems using dynamic prog	gramming method and non-linear programmi	ing tech	niques.
Pre-Requ	uisite:			
1.	Discrete Mathematics BS(CS/IT)408			
2.	Design & Analysis of Algorithm PC(C	CS/IT)406		
Module	Content Hrs. Mar		Marks	
1	Introduction to Optimization & Lin	near Programming:	12	
	Historical Development, Engineering	application of Optimization, Classification		
		on to linear programming, formulation of		
		method for solving LPPs with 2 variables,		
		r Programming, Transportation problem,		
	Assignment problems.			
2	Game Theory:		5	
		ne, Saddle Point, Mini-Max and Maxi-Min		
	Theorems (statement only) and problems, Games without Saddle Point,			
2	Graphical Method, Principle of Domir	nance.		
3	Sequencing Models:		5	
		of solution, Two machines and n jobs (no		
		(no passing), Two jobs and m machines, n		
1	jobs and m machines.		1	
4.	Queuing Theory:		4	

	Introduction; Basic Definitions and Notations, Axiomatic Derivation of the Arrival & Departure (Poisson Queue), Poisson Queue Models: $(M/M/1)$: $(\infty / FIFO)$ and $(M/M/1: N / FIFO)$ and problems.			
5.	PERT/CPM:	5		
	Introduction to Network analysis, definition of a project, job and events, drawing			
	of arrow diagrams, Project management origin and use of PERT, origin and use			
	of CPM, Application of PERT and CPM, Project Network, Diagram			
	representation, Critical path calculation by network analysis and critical path			
	method (CPM), Determination of floats, Construction of time chart and resource			
	labelling.			
6.	Dynamic Programming & Non-Linear Programming:	5		
	Basic Concepts, Bellman's optimality principles, Dynamic programming			
	approach in decision making problems, Unconstrained optimization techniques,			
	Direct search methods – Fibonacci Search Method, Golden section Search			
Common	Method.			
	Outcomes: appleting of the course, student will be able to-			
CO1	Solve LPP using different techniques.			
CO2	Apply various method to solve game problems.			
CO3	Solve different sequencing problems.			
CO4	Explain basic concept of queuing theory.			
CO5	Analyze project management problem using PERT and CPM.			
CO6	Apply dynamic programming and non-linear programming to solve various proble	ms.		
Learning	Resources:			
1.	S.S. Rao, "Engineering optimization: Theory and practice", New Age International (P) Limited, ISBN: 9788122427233			
2.	H. A. Taha, "Operations Research", Pearson, ISBN: 9780134444017			
3.	Ghosh and Chakraborty, "Linear Programming and Theory of Games", Central Book Agency,			
	ISBN: 9780198538646			
4.	J. K. Sharma - "Operations Research", Macmillan Publishing Company, ISBN: 9781403931511			
5.	NVR Naidu, G Rajendra, T Krishna Rao, "Operations Research", I K International Publishing			
	house, New Delhi, ISBN: 9789380578941			
6.	Kanti Swaroop — "Operations Research", Sultan Chand & Sons, ISBN: 9789351610236			
7.	S.D.Sharma, "Operations Research" ,KedarnathRamanath& Co, ISBN: 9789380803388			
8.	A.M. Natarajan, P. Balasubramani and A. Tamilarasi - "Operations Research", Pearson, ISBN: 9789332526471			
9.	M. V. Durga Prasad – "Operations Research", CENGAGE Learning, ISBN: 9788	3131516	256	
L	I			

Name of the course	DIGITAL COMMUNICATION
Course Code: OEC(IT/CS)601B	Semester: 6 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory.: 3 hrs./week	Mid Semester I and II Exams: 30 Marks

Credit Po	int: 3	Assignment, Quiz & class attendance: 20 M	larks –		
Credit i o	End Semester Exam: 75 Marks (to be mapped into 50 m			(0 marks)	
Objectiv	ρ·	Life Semester Litarii. 73 Warks (to be mappe	d into 2	o marks)	
1.		communication system			
2.	To understand the building blocks of communication system. To prepare mathematical background for communication signal analysis.				
3.	To understand and analyze the signal				
4.		a communication system in presence of	noico	and other	
4.	interferences.	a communication system in presence of	noise a	ina otner	
Pre-Requ					
1.	Signals and Systems.				
2.	Analog and digital electronic circuits	,			
Module	Content	·	Hrs.	Marks	
1	Module I: Sampling and Pulse Mo	dulation tachniques	8	Marks	
1	1	impulse sampling, natural & flat topped	0		
		rom samples, Concept of Aliasing and anti-			
	aliasing filter.	ration Non-uniform quantization A law and			
	_	zation, Non-uniform quantization, A-law and			
	1 -	chniques, Concept of Bit rate, Baud rate, M-			
		ation-PAM, PWM, PPM. Fundamentals of			
	<u> </u>	concept of Delta modulation, Adaptive delta			
2		Different types of multiplexing: TDM, FDM.	8		
2	Module II: Digital Transmission:		8		
		nunication, comparative study of digital			
	communication and analog commun				
		coding & its desirable properties, Different			
	1	II, Manchester coding and their spectra.			
		imum filter, Matched filter and correlation			
	<u> </u>), Eye pattern, Signal power in binary digital			
3	signal. Module III: Digital carrier modula	ation & demodulation techniques	8		
3		tion techniques- ASK. FSK, PSK, BPSK,	0		
		•			
	modulation and CDMA.	parisons. Basic concept of spread spectrum			
4	Module IV: Introduction to inform	nation theory.	6		
4		formation and its unit, Entropy, Mutual	0		
		es of channels, the channel Capacity, the			
	source coding & entropy coding.	es of chamiers, the chamier capacity, the			
5	Module V: Error control coding t	haarv•	6		
J	1	cor correction coding, Parity Coding, Vertical	0		
	1	Block Codes and Hamming Codes, Cyclic			
	Code.	Block Codes and Hamming Codes, Cyclic			
Course (
	npletion of this course the students wil	l he able to -			
CO1	*	ling techniques and their performance analysis			
CO2				rror roto	
CO2	analyze the performance of a baseband and pass band communication system in terms of error rate			ioi iate	
CO2	and spectral efficiency.	sin analysis of the signals in a communication	ariatan-		
CO3	perioriii die dille and frequency doma	ain analysis of the signals in a communication	system.		

CO4	decide the required blocks in a design of communication system.	
CO5	analyze performance of spread spectrum communication system.	
Learnin	g Resources:	
1.	Modern Digital and Analog Communication systems, B.P. Lathi, Oxford University press	
2.	An Introduction to Analog and Digital communication, Simon Haykin, Wiley India.	
3.	Analog communication system, P. Chakrabarti, Dhanpat Rai & Co.	
4.	Principle of digital communication, P. Chakrabarti, Dhanpat Rai & Co.	
5.	Digital and Analog communication Systems, Leon W Couch II, Pearson, Education Asia.	
6.	Communication Systems (Analog and Digital), Dr. Sanjay Sharma, S. K. Kataria & Sons	
7.	Principles of Communication Systems, Taub and Schilling, Tata McGraw-Hill Education	

Name of	the course C	Cyber Law and Security Policy		
Course Code: OEC(IT/CS)601C		Semester: 6 th		
Duration	: 6 months N	Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theory: 3 hours/week		Mid Semester I and II Exams: 30 Marks		
Credit Points: 3		Assignment, Quiz, Surprise tests, Presentation tc.: 20 Marks	ons, Atte	endance
	E	End Semester Exam: 75 Marks (to be mappe	ed into 5	0 marks)
Objectiv	e:			
1.	To provide with the basic understand	ding of cyberspace and Cyber Security,	cyber	laws and
	knowledge of security related to variou	s attacks.		
2.	To understand the concept of cybercrim	ne and its types.		
3.	To comprehend the basics of various at	ttack techniques.		
4.	To take preventive measures against various attacks.			
5.	To provide the basic understanding of cyber laws and legal perspective of cybercrimes.			
Pre-Requ	usite:			
1.	Computer Network			
Module	Content		Hrs.	Marks
1	Introduction to Cyber Security:		5	
	Defining Cyberspace, Architecture, Re	gulation of cyberspace, Concept of Cyber		
	Security, Importance of cyber security	and cybersecurity strategy; Perspective of		
	cyber security policy, National Cybe	er Security Policy (2013). Overview of		
	Cyber-attack, Cyberwarfare (Cyber esp	pionage and sabotage), Cyberterrorism.		
2	Cybercrime:		10	
	Cybercrime and its evolution, Cyberc	crime categories, Cybercrimes- targeting		
	-	Trojan horse, backdoors), ransomware,		
	, ,	ne on Mobile Phones: Security challenges		
		ity for mobile devices, Attacks on Mobile		
	phones (Mishing, Smishing, Vishing, M			
3	Tools and Techniques Used in Cyber		10	
	_	d Tunnelling techniques (cover up), Fraud		
	Techniques (Phishing, Rogue Antiviru	rus, Click Fraud), Identity Theft, Botnets,		

	Buffer Overflows, SQL Injection, DoS and DDoS attacks, Keylogger and			
	spyware; Cyberstalking, Social Engineering, Hacking(Ethical/ Hacktivism)			
4	Cyber Strategy and Security policy:	5		
	Need and building of a cyber strategy, cyber attack and cyber defense strategies,			
	cybersecurity strategies for business, Protecting the network: IDS/IPS, Firewall.			
5	Cyber Law:	6		
	The Legal perspective of cybersecurity and cybercrime, The Indian IT Act, IT			
	Act 2000: Challenges, Digital Signature and ITA 2000, Amendments to IT Act.			
Learning	g Resources:			
1	Godbole, Nina, and Sunit Belapure. "Cyber Security." Wiley India, New Delhi (20	12).		
2	Graham, James, Ryan Olson, and Richard Howard, "Cyber security essentials". Cl	RC Press	s, 2016.	
3	Wu, Chwan-Hwa John, and J. David Irwin. "Introduction to computer networks an	ıd		
	cybersecurity". CRC Press, 2016.			
4	Kremling, Janine, and Amanda M. Sharp Parker. "Cyberspace, cybersecurity, and	cybercri	me".	
	SAGE Publications, 2017.			
5	Alexandrou, Alex. "Cybercrime and Information Technology: The Computer Network			
	Infrastructure and Computer Security, Cybersecurity Laws, Internet of Things (Io7	Γ), and N	l obile	
	Devices". CRC Press, 2021.			
	Outcomes:			
	appletion of the course the students will be able to-			
CO1	Explain the concepts of cyberspace, Cybersecurity and its perspectives, National p	olicy on		
	cybersecurity, Cyberattack, Cyberwarfare and Cyberterrorism			
CO2	Identify various types of attacks related to cyberspace and the cybercrimes targeting computer and			
	mobiles.			
CO3	Differentiate the tools and techniques used in cybercrime.			
CO4	Develop cyber security strategies for businesses to prevent different cyberattacks and network			
	intrusion.			
CO5	Explain legal issues of cybercrime, Indian IT Act 2000, its amendments and the pr	ovision	of	
	digital signature in ITA2000.			

Name of	the course	Control System
Course (Code: OEC(IT/CS)601D	Semester: 6th
Duration	n: 6 months	Maximum Marks: 100
Teaching	g Scheme	Examination Scheme
Theory:	3 hrs/week	Mid Semester Exam I: 15 Marks
Credit Po	pints: 3	Mid Semester Exam II: 15 Marks
		Other Assessment tools (Assignment, Quiz etc.): 20 Marks
		End Semester Exam: 75 Marks (Converted to 50)
Objectiv	e:	
1.	1. To classify different systems and the related parameters.	
2.	To apply different mathematical tools	& techniques for analyzing different practical systems.
3.	To develop the concept of stability of a	a system and compute stability parameters.
4.	To design different controller parameters for stabilizing specific systems	
Pre-Req	Pre-Requisite	
1.	Basic Electrical Engineering (ES (CS/I	T) 101)

2.	Mathematics (BS (CS/IT) 101, BS (CS/IT) 205, BS(CS/IT)307)		
Module	Content	Hrs.	Marks
1	Introduction to Control System: Introduction to control system, objectives and	3	
	areas of applications, Open loop system and closed loop system, Feedback		
	control and Automatic control: concepts and examples, Concept and examples of		
	linear and nonlinear systems, sensitivity, robustness, accuracy		
2	Concept of transfer function: mathematical modeling of physical systems:	7	
	Transfer function of real life systems, properties and applications, Basic concepts		
	of poles and zeroes of a transfer function, Mathematical modeling: electrical		
	analogy of spring-mass-dashpot system, Block diagram representation of		
	physical systems and analysis of block diagram, Different techniques for block		
	diagram reduction, Development of signal flow graph, Mason's gain formula		
3	Control system components: Potentiometer, Synchros, Resolvers, Position	3	
	encoders, Tacho-generators, Actuators, Basic concept of position control, speed		
	control, temperature control, liquid level control, pressure control.		
4	Time domain analysis: Impulse, step and ramp function, Step response of first	7	
	and second order system, Time domain analysis of a standard second order closed		
	loop system, Understanding of Steady state error, undamped natural frequency,		
	damping, overshoot, rise time and settling time and their applications, Stability		
	assessment using locations of poles and zeroes, Stability analysis using Routh-		
	Hurwitz criteria		
5	Stability Analysis and control: Stability analysis using Root locus techniques	11	
	from transfer function, Idea of semi-log graph, Bode plots and stability analysis		
	using Bode plots from transfer function, Measurement of phase margin and gain		
	margin, Development of polar plots from transfer function, Measure of relative		
	stability using Nyquist criteria, PI, PD and PID control		
6	Introduction to State variable Analysis: State variables and state space model,	5	
	Diagonalization, Solution of state equations, Computation of stability,		
	controllability and observability from state model		
Learning	g Resources:		
1.	Modern Control Engineering, K. Ogata, 5 th Edition, Pearson Education India		
2.	Control System Engineering, I. J. Nagrath & M. Gopal. 6 th Edition, New Age Inter-Publication.	national	
3.	Automatic Control Systems, B.C. Kuo & F. Golnaraghi, 10th Edition, McGraw Hil	ll India	
4.	Automatic Control Systems (with Matlab Programs), S. Hasan Saeed, Kataria, S. K	., & So	ns
5.	Modern Control Engineering, D. Roy Choudhury, PHI Learning		
6.	Control Systems, A. Anand Kumar, 2 nd Edition, PHI Learning		
7.	Linear Control Systems with MATLAB Applications, B. S. Manke, Khanna Publis	hers	
Course (Outcomes:		
After con	npletion of the course the students will be able to-		
CO1	Develop transfer function of different systems using mathematical analysis, block diagram reduction, Mason's gain formula etc.		
CO2	Explain the operation of different components of control system and physical control systems		
CO3	Examine the system performance using different parameters of time domain response		
CO4	Determine stability of a system using Root locus techniques, Bode plots and Nyqu		ria using
<u> </u>	transfer function of a system		
CO5	Measure controllability and observability of a system from its state space model		

Name of	the course: Indus	trial Management		
Course Code: HS(CS/IT)604		ster: 6 th		
Duration: 6 months		num Marks: 100		
Teaching	Scheme Exam	ination Scheme		
Theory Contact Hrs.: 3 hrs/week		emester-1 Exam: 15 Marks		
Credit Po	oint: 3 Mid S	emester-2 Exam: 15 Marks		
Assignment, Quiz & class attendance: 20		Marks		
	End S	emester Exam: 75 Marks (to be map)	ed into	50 marks)
Objective	<u> </u>		•	
1.	To understand what is industrial Managemen	nt		
2.	To understand different corporate structures			
3.	To understand quality management and final			
4.	To understand the union and State budget			
Pre-Requ				
1.				
Module	Content		Hrs.	Marks
		advetion of Human Decourse	03	Wiai KS
1.	Human resource Management: Intr Management, recruitment and selection,		03	
	trade, collective bargaining.	performance appraisar, measurar,		
2.	Organisational behaviour: Different se	chools of Management thought:	05	
	scientific management, administrative theorem			
	relations theory.			
	Motivation: different theories, Communication			
	effective communication, guidelines to			
	Perception: process, important factors inf			
3.	judging people, Halo effect, stereotyping pro		05	-
3.	Quality management: concepts, dimension quality, statistical quality control, control,		03	
	management, new quality tools	acceptance sampling, total quanty		
4.	Marketing management: basic concepts	of marketing, difference between	04	
	selling and marketing, elements of marketi	ng mix, brief idea about marketing		
	environment, simple marketing strategies, S	WOT analysis		
5.	Introduction to accounting: basic account		10	
	uses, limitations, advantages, types of	9.		
	introduction to general accounting, differen			
6.	bookkeeping, different types of transaction in Financial control: posting of ledgers a		06	
0.	preparation of balance sheet and profit ar		00	
	departments by financial accounting (a pract	_		
7.	Budget analysis: union and State budge		04	
	budget at a glance, annual financial statem			
	year	<u> </u>		
Course C	Outcomes:			•
After con	npletion of this course the students will be able	e to -		

CO1	analyse different management techniques and schools of Management			
CO2	analyse about different quality control methods and organisational behaviour			
CO3	create strategic management in future			
CO4	comprehend and analyse accounts and its related management			
CO5	analyse union and State Government budgets			
Learning	Learning Resources:			
1.	Industrial Management volume 1 LC, Jhamb, EPH			
2.	Industrial relations trade unions and labour legislation- Sinha Pearson education Asia			
3.	Financial Management and accounting- P.k JaJain, S Chand			
4.	Organisational behaviour- SP Robbins, Prentice Hall			
5.	Production and operations management Joseph Monks, TMH			

Name of the course		omputer Network Lab		
Course (mester: 6 th		
Duration	: 6 months M	aximum Marks: 100		
Teaching	g Scheme Ex	camination Scheme		
Practical:	Practical: 3 hrs/week Continuous Evaluation			
Credit Points: 1.5		periment:50		
<u> </u>	La	b copy:30		
<u>. </u>	Vi	va:20		
Objectiv	e:			
1.	To study the components of computer netw	vork		
2.	To configure MAC, IP and subnet			
3.	To implement socket programming			
4.	To configure different server			
5.	To implement real life application of client	t server paradigm		
Pre-Requ	uisite			
1.	Basic knowledge of communication engine	eering		
Module	Content		Hrs.	Marks
1	NIC Installation & Configuration (Window	vs/Linux)	1	5
2	Understanding IP address, subnet, MAC a	ddress, IP configuration	2	5
3	Networking cables (CAT5, UTP), Connec	etors (RJ45, T-connector)	1	5
4	Physical verification of existing LAN		2	5
5	5.TCP/UDP Socket Programming		18	50
	i) UDP time client server program			
	ii) UDP echo client server program			
	iii) TCP time client server program			
	iv) TCP echo client server program			
	v) TCP chat client server program			
	Vi) Data Link Layer Error Detection Mech	nanism (Cyclic Redundancy Check)		

6	Server Setup/Configuration FTP, Telnet, DNS.	6	10	
7	Firewall configuration in client level	3	5	
8	Mini project: Multiple user chat server implementation 6 1.			
Course (Outcomes:			
After cor	npletion of this course, the learners will be able to-			
CO1	Investigate configuration of existing LAN			
CO2	Investigate and configure different components of computer network			
CO3	Implement client server model using socket programming			
CO4	Implement different server configuration			
CO5	Configure firewall			
CO6	Design of real life problems and solution for multiple client chat server			

Name of	f the course	Project 1	
Course	Code: PROJ(IT)601	Semester: 6 th	
Duratio	n: 6 months	Maximum Marks: 100	
Teachin	g Scheme	Examination Scheme	
Project v	work: 6 hours/week	Internal Evaluation: 80 Marks	
Credit P	oints: 3	End Semester (External) Exam: 20 Marks	
Objecti	ve:		
1.	To provide with the basic understanding	g of computer science and knowledge of proficient different	
	techniques.		
2.	Familiar with technical documentations	and research articles related to some engineering problem.	
3.	Put in order a systematic literature survey on some engineering problem and existing solutions.		
4.	Evaluate the scholarly articles.		
Pre-Rec	quisite:		
(As requ	nired)		
Learnin	g Resources:		
(As requ	ired)		
Course	Outcomes:		
After co	mpletion of this Project 1 the students wi	ll be able to -	
CO1	Analyze technical documentations and a	research articles related to some engineering problem.	
CO2	Evaluate the scholarly articles with peer	members as a team.	
CO3		on some engineering problem and existing solutions	
CO4	Demonstrate the knowledge, skills and	attitudes of a professional engineer during presentation.	
CO5	Defend the arguments of research article	es cited in survey report during presentations.	

B.	Tech.	(IT)	Curriculum,	2018-19

FOURTH YEAR FIRST SEMESTER

	7 th SEMESTER						
SL. NO.	PAPER CODE	PAPER NAME	L	Т	P	CONTACT HRS./WEEK	CREDIT
THEORY							
01	PEC(IT)703	Elective-III	3	0	0	3	3
02	PEC(IT)704	Elective-IV	3	0	0	3	3
03	OEC(IT/CS)702	Open Elective II	3	0	0	3	3
SESS	SIONAL/PRACTICAL						
01	PROJ(IT)702	Project 2	0	0	12	12	6
02	PEC(IT)704(A/B/C/D)L	Elective-IV Lab.	0	0	3	3	1.5
03	INDTR(IT)701	Industrial Training	0	0	0	0	1
04	CLA(IT)-7	Comprehensive Laboratory Assessment	0	0	0	0	1
тот	TOTAL		9	0	15	24	18.5

PEC(IT)703 PEC(IT)704 OEC(IT/CS)702

A: Machine Learning
A: Web Technology
A: VLSI Design and Algorithm
B: Distributed Systems
B: Internetworking
C: Cloud Computing
C: Pattern Recognition
C: Management Information Sys.

D: Real Time Operating Sys. D: Natural Language Processing D: Big Data Analytics E: Artificial Intelligence

Name of	the course	MACHINE LEARNING		
Course C	ode: PEC(IT)703A	Semester: 7 th		
Duration	6 months	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
	hrs./week	Mid Term I: 15 Marks		
Credit Poi	nts: 3	Mid Term II: 15 Marks		
		Assignment, Test based on assignments, S	urprise te	sts.
		Quizzes, Presentations, etc.: 20 Marks	.	,
		End Semester Exam: 75 Marks (to be map	ped into 5	60 marks)
Objective	es:	I		
1.	To understand and implement existi	ing learning algorithms		
2.		lculus and linear algebra in order to develor	new pred	lictive
	models for learning methods		*	
3.	To select and apply an appropriate l	earning algorithm for problems of different	kinds, inc	luding
	classification, regression, structure p			
4.	_	involving data, such that they can be solved	by machii	ne
	learning.			
Pre-Requ				
1.	2 ()	thematics II [BS(CS/IT)205], Mathematics	III	
2	[BS(CS/IT)307].	[DOI /CG/IT\205]		
2.	Programming knowledge in Python	[PCL(CS/11)305]	T	
Module	Content		Hrs.	Marks
1		ypes of learning. Probability and Bayes	4	10
		ig Machine Learning Models, Prepare the		
		thms, Data Cleaning, Handling Text and lissing Values, Exploration of Data using		
	Visualization, Types of Machine Le			
2		ssion, Multivariate regression, Decision	4	10
	_	n for Linear Regression Model, Multi-		
	collinearity, Logistic Regression.			
3	Supervised Learning: Types of c	lassifiers, Binary Classifier, Naive Bayes	6	20
	Classifier, Multiclass, Multi-label	and Multi-output Classifier, Decision		
		rees: Random Forests, Support Vector		
	Machines, Model Evaluation and In		_	10
4	•	ensionality Reduction, Feature Extraction,	5	12
	_	Component Analysis (PCA), Randomized A, Selecting a Kernel and Tuning Hyper-		
	parameters.	A, Selecting a Kerner and Tuning Hyper-		
5	Unsupervised Learning: Diffe	rent clustering algorithms, Partitive,	5	20
	_	stering, Clustering for big data, Compare		
	-	and Hierarchical Clustering, Anomaly		
	Detection using Gaussian Mixtur	res, Assessment Metrics for Clustering		
	Algorithms.			
6.	Reinforcement Learning: Introdu	uction, model free and model based RL,	4	10

	RL algorithms – Q learning, State-Action-Reward-State-Action (SARSA)				
	etc.				
7.	Neural Network: Introduction, Multilayer network, Perceptron Learning,	8	18		
	Backpropagation, Initialization, Training & Validation, Parameter Estimation				
	- MLE, MAP, Bayesian Estimation, Introduction to Deep Neural Network,				
	Convolution Neural Network and Recurrent Neural Network.				
Course	Outcomes:				
After co	mpletion of this course students will be able to-				
CO1	Explain the fundamental issues and challenges of machine learning: data, model complexity, etc.	selection	, model		
CO2	Explain a wide variety of learning algorithms.				
CO3	Apply the underlying mathematical relationships to Machine Learning algorithm	ns.			
CO4	Analyze different learning algorithms like supervised, un-supervised and reinforcement learning.				
CO5	Select algorithm (neural network) for specific application.				
CO6	Design and implement various machine learning algorithms in a range of real w	orld appli	cations.		
Learnin	g Resources:				
1.	Tom Mitchell, Machine Learning, McGraw Hill Education.				
2.	M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundation of Machine Learning, M	IIT Press.			
3.	Christopher Bishop. Pattern Recognition and Machine Learning. 2e, Springer.				
4.	S. S. Shwartz and S. B. David, Understanding Machine Learning: From Theory	to Algor	ithms,		
	Cambridge University Press, 2014.				
5.	I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press.				
6.	V.S. Devi; M.N. Murty, Pattern Recognition: An Introduction, Universities Pro-	ess,Hyder	abad,		
	2011.				
7.	R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, Wiley, 2000				
	<u>l</u>				

Name of the course		DISTRIBUTED SYSTEMS		
Course C	ode: PEC(IT)703B	Semester: 7 th		
Duration	: 6 months	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3	hrs./week	Mid Term I: 15 Marks		
Credit Poi	nts: 3	Mid Term II: 15 Marks		
		Assignment, Test based on assignments, Surprise tests,		
		Quizzes, Presentations, Attendance etc.: 20 Marks		
		End Semester Exam: 75 Marks (to be mapped into 50 marks)		
Objective	:			
1.	To learn the principles, architecture	s, algorithms and models used in distributed systems.		
2.	To give an understanding of the	principles and techniques behind the design of distributed		
	systems, such as message passing, of	coordination, synchronization and fault tolerance.		
3.	To understand the issues involved	in a virtual uniprocessor system of multiple computers along		
	with a distributed shared memory.			

4.	To provide an exposure conceptually into the design and functioning of ex	isting d	istributed
	systems		
Pre-Requ			
1.	Operating Systems [PC(CS/IT)511]		
2.	Computer Networks [PC(CS/IT)617]		
Module	Content	Hrs.	Marks
1	Introduction: Introduction to DCS, DCS design goals, Design issues,	4	
	Transparencies, Examples and trends in distributed system, Challenges,		
	Architectural models.		
2	Inter-process communication: Basic Message Passing Model, Issues in IPC	6	
	by message, RPC basics, The RPC Model, RPC implementation, RPC		
2	communication protocols, Lightweight RPC.	<u></u>	
3	Distributed Coordination: Temporal ordering of events, Lamport's logical	5	
	clocks, Vector clocks, Ordering of messages, Physical clocks, Global state detection.		
4	Distributed System Synchronization: Distributed Mutual Exclusion, Election	7	
T	Algorithms, Deadlocks in Distributed Systems, Termination detection.		
5	Distributed Shared Memory: DSM Concepts, Architecture, Design and	4	
3	Implementation Issues, Algorithms for implementing DSM. Memory	-	
	Coherence, Heterogeneous and other DSM systems.		
6	Fault Tolerance: Failure Models, Process Resilience, Reliable Client Server	5	
	and Group Communications, Distributed Commit Protocols, Check-pointing		
	and Recovery		
7	Distributed File System: DFS definition, Characteristics, Goals, DFS Design,	5	
	DFS Implementation, File Caching and Replication in DFS.		
Learning	Resources:		
1	Andrew S. Tanenbaum and Maarten V Steen, Distributed Systems Principles and	l Paradig	gms, PHI.
2	Coulouris, G. et al, Distributed Systems: Concepts and Design, 3rd Edition, Add	ison We	sley.
3	P. K. Sinha, Distributed Operating Systems: Concepts and Design, IEEE press.		
4	Singhal Mukesh & Shivaratri N. G., Advanced Concepts in Operating Systems,	ГМН	
5	Tanenbaum, A. S. Distributed Operating Systems, Prentice Hall.		
6	Ajay D. Kshemkalyani and Mukesh Singhal, Distributed Computing: Principles Systems, Cambridge University Press.	s, Algori	thms and
Course O	outcomes:		
After succ	cessful completion of this course, the learners will be able to -		
CO1	Illustrate the design goals, issues and challenges associated and the architecture of system.	of a distr	ibuted
CO2	Demonstrate the knowledge of details of message passing system and RPCs of denvironment.	istribute	d
CO3	Apply important methodologies in distributed systems to support coordination ar synchronization of such systems.	nd	
CO4	Explain the architecture, design issues, implementing algorithms and coherences Shared Memory.	of Distr	ibuted
CO5	Analyze the implementation and underlying concepts of file caching and replica	tion in d	istributed
/ -	, and the same series of the same series of the same replies	0	

	file system.
CO6	Discern the issues related with faults in a distributed system to suggest basic measures.

Name of the course		UD COMPUTING		
Course (Code: PEC(IT)703C Seme	ester: 7th		
Duration	n: 6 months Maxi	imum Marks: 100		
Teaching	g Scheme Exam	nination Scheme		
Theory:	3 hrs./week Mid 7	Гегт I Exam:	15 Marl	KS
Credit Po	pints: 3 Mid	Гегт II Exam:	15 Mar	ks
		s performance & Attendance:	20 Mar	ks
		Semester Exam: 75 Marks (to be map	ped into	50 marks)
Objective	<u>e:</u>	<u> </u>		
1.	To understand the concept of cloud comput	ting.		
2.	To introduce the various levels of services			
3.	To describe the security aspects in cloud.	,		
4.	To solve a real-world problem using cloud	computing.		
5.	To appreciate the emergence of cloud as th	1 0	m	
Pre-Requ		e nem generation compating paracis.		
1.	Operating System			
2.	Computer Networks		-	36.1
Module	Content		Hrs.	Marks
1	Introduction to Cloud Computing:		3	
2	Cloud Computing (NIST Model), Propertie	s, Characteristics & Disadvantages		
2	Cloud Computing Architecture:	Conformant Madala	5	
2	Cloud computing stack, Service Models, D	Deproyment Models		
3	Infrastructure as a Service (IaaS):	on Coop study on IooC	6	
	Introduction to IaaS, Resource Virtualization	on, Case study on Iaas		
4	Platform as a Service (PaaS):	Management Constitution Back	5	
	Introduction to PaaS, Cloud Platform and I	Management, Case study on PaaS.		
	Software as a Service(SaaS):		_	
_	To the dead in the Conf. White and the William	0.0 W-1-00 C 041 00		
5	Introduction to SaaS, Web services, Web 2		5	
5 6.	Service Management in Cloud Computing	ng:	6	
	Service Management in Cloud Computing Service Level Agreements (SLAs), Billing	ng: g & Accounting,Comparing Scaling		
	Service Management in Cloud Computing Service Level Agreements (SLAs), Billing Hardware: Traditional vs. Cloud, Ec	ng: g & Accounting,Comparing Scaling		
6.	Service Management in Cloud Computing Service Level Agreements (SLAs), Billing Hardware: Traditional vs. Cloud, Ecenormously, Managing Data	ng: g & Accounting,Comparing Scaling	6	
	Service Management in Cloud Computing Service Level Agreements (SLAs), Billing Hardware: Traditional vs. Cloud, Ecenormously, Managing Data Cloud Security:	ng: g & Accounting, Comparing Scaling onomics of scaling: Benefitting		
6.	Service Management in Cloud Computing Service Level Agreements (SLAs), Billing Hardware: Traditional vs. Cloud, Ecenormously, Managing Data Cloud Security: Infrastructure Security, Data security	ng: g & Accounting, Comparing Scaling onomics of scaling: Benefitting and Storage, Identity & Access	6	
6.	Service Management in Cloud Computing Service Level Agreements (SLAs), Billing Hardware: Traditional vs. Cloud, Eccenormously, Managing Data Cloud Security: Infrastructure Security, Data security Management, Access Control, Trust, Reput	and Storage, Identity & Access tation, Risk, Authentication in cloud	6	
6.	Service Management in Cloud Computing Service Level Agreements (SLAs), Billing Hardware: Traditional vs. Cloud, Ecenormously, Managing Data Cloud Security: Infrastructure Security, Data security	and Storage, Identity & Access tation, Risk, Authentication in cloud	6	

1	Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010		
2	Cloud Computing: Principles and Paradigms, Editors: Rajkumar Buyya,		
	James Broberg, Andrzej M. Goscinski, Wile, 2011		
3	Cloud Computing: Principles, Systems and Applications, Editors: Nikos Antonop		
	Lee Gillam, Springer, 2012		
4	Rittinghouse, John W., and James F. Ransome, Cloud Computing: Implementation, Managemen		
	and Security, CRC Press, 2017.		
5	Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz, Russell		
	Dean Vines, Wiley-India, 2010		
6	Cloud Computing: A Practical Approach, Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, Tata		
	McGraw Hill, rp2011.		
Course	Course Outcomes:		
After co	After completion of this course, the learners will be able to		
CO1	Analyze the trade-offs between deploying applications in the cloud and over the local		
	infrastructure.		
CO2	Compare the advantages and disadvantages of various cloud computing platforms.		
CO3	Deploy applications over commercial cloud computing infrastructures.		
CO4	Select the appropriate technologies and approaches for implementation and use of cloud.		
CO5	Analyze the performance, scalability, and availability of the underlying cloud technologies and		
	software.		
CO6	Identify security and privacy issues in cloud computing.		
i			

Name of the course		REAL TIME OPERATING SYSTEM			
Course Code: PEC(IT)703D		Semester: 7th			
Duration: 6 months		Maximum Marks: 100			
Teaching Scheme		Examination Scheme			
Theory: 3 hrs/week		Mid Term I Exam:	15 Marks		
Credit Points: 3		Mid Term II Exam:	15 Marks		
		Class performance & Attendance:	20 Marks		
		End Semester Exam: 75 Marks (to be mapped into 50 marks)			
Objective	e:	-			
1.	To understand the structure and properties of real time operating system.				
2.	To understand resource management activities in Real time operating system.				
3.	To apply different techniques for process management and memory management in RTOS.				
4.	To implement RTOS models.				
Pre-Requ	uisite:				
1.	Operating Systems				
Module	Content		Hrs.	Marks	
1	Introduction to RTOS		6		
	Overview of Architecture of OS, Virtual Computers, Interaction of O.S. &				
	hardware architecture, Distributed real-time systems, multiprocessor real-time				

	systems.			
2	Architecture of RTOS	8		
	Defining Real time systems, designing and Developing Real-time Systems,			
	Special Characteristics of real time systems, Hard Real Time System and Soft			
	Real Time System, Interrupts and Exceptions, Concepts of interrupt driven			
	activation, need for real time monitor, pseudo parallelism, meeting of deadlines			
	& real time constraints, Real-Time Devices, Event driven activities, Timers and			
2	Real-time Facilities.			
3	Resource management	6		
	Resource management in real-time systems, potential problems and their resolution, issues in building real-time systems. Resource sharing in real-time			
	systems.			
4	Process Management	6		
•	Multitasking in Real-Time Systems, Real Time Scheduling concepts.			
	Uniprocessor scheduling, Multiprocessor Scheduling, schedulable analysis,			
	clock-driven and priority-driven scheduling Process Synchronization, Inter-task			
	communication Networking,			
5	Memory management	4		
	Memory space protection, Memory allocation schemes, deallocation, large virtual			
	address space, memory protection.			
6	Implementation model Overwiere of WARD & MELLOR Methodology Word & Mellor Life Cycle the	6		
	Overview of WARD & MELLOR Methodology: Ward & Mellor Life Cycle, the essential model step, the, real time extensions of DFD Real time languages:			
	overview of ADA/Java Extension			
Course	Outcome:			
After con	mpletion of the course students will able to-			
CO1	Review different types of Operating systems, their basic structure and features.			
CO2	Select the architecture of real time operating system.			
CO3	Analyze the resource management in real time operating system.			
CO4	Determine the process management in real time operating system.			
CO5	Evaluate the memory management in real time operating system.			
CO6	Develop different real time implementation models.			
Learnin	g Resources:			
1	"Real Time Systems," - C.M. Krishna and G. Shin, -McGraw-Hill International Edition			
2	"Real Time Systems and software" -Alan C. Shaw; John Wiley & Sons Inc			
3	"Real time Systems", J. W. S. Liu, Pearson			
4	"Embedded and real time operating systems"K.C. Wang- Springer			
5	"Building a real time operating system"Colin Walls Newnes publication			
6	"Real time operating system books" –Jim Cooling			

Name of the course	WEB TECHNOLOGY
Course Code: PEC(IT)704A	Semester: 7 th

Duration: 6 months		ximum Marks: 100		
Teaching Scheme		mination Scheme		
Theory: 3 hrs./week		Term I: 15 Marks		
Credit Points: 3		Term II: 15 Marks		
		ignment, Test based on assignments, Su	irprise te	sts,
		zzes, Presentations, Attendance etc.: 2	20 Mark	S
	End	Semester Exam: 75 Marks (to be mapp	ed into 5	60 marks)
Objectiv	ve:			
1.	To understand the web-based technologies	and able to apply the appropriate one to	design	web-
	based applications.			
2.	To apply different web design tools & tech	niques for developing web application.		
3.	To understand the underlying architecture of web-based applications.			
4.	To solve the common ecommerce site designation	gn and maintenance problems.		
Pre-Req	uisite:			
1.	Object Oriented Programming [PC(CS/IT	7)513]		
2.	Database Management System [PC(CS/II	Γ)512]		
Module	Content	<u> </u>	Hrs.	Marks
1	Module1: Introduction to Web Applica	ation	3	
1	Web Client, Web server, Web Application			
	Request-Response Paradigm, Server-side			
	Interface, JEE Overview, JEE Architectur	-		
2	Module2: Web Pages		5	
	Static, Dynamic and Active Web Pages, C			
	Bootstrap, Java Applets: Applet Life Cycl	le, Applet API, Graphics and Event		
2	Handling in Applet.		1	
3	Module3: JavaScript Variables, Expressions, Control Statemen	te Arroye Objects Functions Events	4	
	and Validations, Regular Expressions.	us, Arrays, Objects, Functions, Events		
4	Module4: XML		3	
	Introduction to XML, Document Type De	efinition and its attributes and entities,		
	Namespaces and Schema, XSLT.			
5	Module5: JDBC		3	
	Introduction to Java database connectivity			
	connection, Executing query, Result proce			
	with PreparedStatemnt, Callable Statemen	nt.		
6	Module6: Java Servlet	ha Camilat Amahitaatuma Tha Camilat	6	
	Server-side programming, Servlet API, The Life Cycle, GET and POST, Servlet Life			
	Database connectivity through servlet, Se	-		
	Servlet chaining.			
7	Module7: Java Server Pages		6	
	Introduction to JSP, Life Cycle of a JSP F	Page, JSP Elements: Directives,		
	Scripting Elements, JavaBeans, Implicit C	Objects and Scope.		
8	Module8: Cookies and Session Manage	ement	4	

	The Contents of a Cookie, Types of Cookies, Creating Cookies using Servlet,			
	Lifecycle of HTTP Session, Session Tracking with Servlet API, Working with a			
	Session.			
9	Module9: Enterprise Java Beans	4		
	Introduction to EJB, Enterprise Bean Architecture, Benefits of Enterprise Bean,			
	Types of Enterprise Bean, Writing Enterprise Beans.			
Course	Outcomes:			
After co	mpletion of this course the students will be able to -			
CO1	Differentiate among various types of web application development technologies.			
CO2	Design the front end of any web application with the help of associated technologies.			
CO3	Apply the skills related to client side validation technique and able to recognize different types		nt types of	
	document type definition in web design.			
CO4 Work with different database management system and also be able to perform different database management system.		n differ	ent CRUD	
	operations.			
CO5	CO5 Create dynamic web pages and also be able to develop server side scripting for se		server side	
processing.				
CO6	Apply user sessions in dynamic web project and also be able to design business logic.			
Learnin	g Resources:			
1	Java EE for Beginners, Sharanam Shah, SPD Publications			
2	Beginning Java EE 5: From Novice to Professional, Mukhar and Zelenak, Apress			
3	Professional Java Server Programming, Allamaraju, WROX Publishers			
4	Java Server Programming Java EE 7 (J2EE 1.7), Kogent Learning Solutions Inc.			

Name of the course Course Code: PEC(IT)704B Duration: 6 months		INTERNETWORKING	
		Semester: 7 th Maximum Marks: 100	
Theory: 3 hrs./week		Mid Term I: 15 Marks	
Credit Points: 3		Mid Term II: 15 Marks	
		Assignment, Test based on assignments, Surprise tests, Quizzes, Presentations, Attendance etc.: 20 Marks	
		End Semester Exam: 75 Marks (to be mapped into 50 marks)	
Objec	ctive:		
1.	To build an understanding of the fundamental concepts of layered protocol stack, Internet administration, architecture and interconnection		
2.	To give an understanding of the general principles behind different addressing schemes, routing, network diagnostics, address translation.		
3.	To cover the issues involved in different Internet related protocols and connection oriented services		
to support network applications and QoS.		and QoS.	
4.	To provide an exposure on the is	ssues of different applications, network-management and network-	
	security.		
Pre-R	Requisite:		

1.	Computer Networks [PC(CS/IT)617]		
Module	Content	Hrs.	Marks
1	An Overview of the Internet: Introduction, The need and scope, Accessing the Internet, Protocol Layering, OSI-ISO, Intranet and Internet, The TCP/IP Internet, Internet services, Internet Architectural model, Internet standards and administration.		
2	Internetworking Concepts: Review of Network technologies: WAN, Switching Network; ISDN and ATM services, DSL technologies, Interconnection through IP Gateways or routers.	4	
3	Internet Addressing: Introduction, Universal identifiers, Classful and classless IP addresses, CIDR, Multicast addressing, Special addresses, subnet and supernet addressing, Mapping internet addresses to physical addresses (ARP), IPv6.	5	
4	Routing: Table driven IP routing, Default Routes, The origin of Gateway routing tables, Core Routers, Distance Vector (Bellman-Ford) routing, Link State Routing, Autonomous system concept, Interior Gateway Protocol (RIP, OSPF), An Exterior Gateway Protocol: BGP, Routing with partial information, MPLS.	7	
5	Internet Protocols: The concept of Connectionless delivery system, The Internet Datagram, Error and control messages: ICMP; NAT. The concept of connectionless and connection oriented transport layer services: UDP datagram, TCP services and segments, TCP congestion control and QoS, SCTP.	7	
6	Internet Security and Firewall: IP Security: IPSec, Security Association, AH, ESP; SSL: Architecture, implementation (four protocols), Use of SSL; Introduction to Firewall, Types and configuration of firewall, squid (proxy), VPN, DMZ.	6	
7	Internet Servers and Applications: DNS, DHCP, FTP, SSH, HTTPS and E-Mail.	4	
Learning	Resources:		
1	Internetworking with TCP / IP - Douglas E .Comer; PE.		
2	Computer Networks and Internets - Douglas E. Comer; PE.		
3	TCP/IP protocol suite - Forouzan Behrouz A; TMH.		
4	Communication Networks - Leon-Garcia-Widjaja; TMH.		
5	Computer Networks – Andrew S. Tanenbaum; PHI.		
5	Data and Computer Communication - William Stallings; PHI.		
Course O	Outcomes:		
-	apletion of the course students will able to-		
CO1	Analyze the fundamental issues, challenges and basic working methodologies of bethe Internet.		anet and
CO2	Apply the fundamental concepts of different addressing schemes and their translati	on.	
CO3	Compare the philosophy and implementation of different routing and their correspond	nding alg	gorithms.
CO4	Apply key networking protocols considering their hierarchical relationship in the c TCP/IP framework.	ontext o	of
CO5	Analyze different security threats and vulnerabilities in the domain of internetworking and the required measures to mitigate the threat.		the

CO6 Demonstrate the working principle and the server implementation of some common applications.

Name of the course		nttern Recognition		
Course Code: PEC(IT)704C Duration: 6 months		emester: 7 th		
		Maximum Marks: 100		
Teaching	g Scheme Ex	xamination Scheme		
Theory:	3 hrs./week Mi	id Term I: 15 Marks		
Credit Po	oints: 3	id Term II: 15 Marks		
	As	ssignment, Test based on assignments, Surpr	ise tests	5,
		uizzes, Presentations, Attendance etc.: 20		
	En	nd Semester Exam: 75 Marks (to be mapped	into 50	marks)
Objective	e:			
1.		gn and construction and a pattern recognition	system	l .
2.		es in statistical and syntactic pattern recogniti		
2.	3 11	algorithm theoretical issues involved in patte		
	system design such as the curse of dime	-		8
3.		lustering algorithm on big data set based on	classific	cation
	rate.			
Pre-Requ	uisite:			
1	The students have a working knowledge of calculus, linear algebra, and probability theory. A ba		A basic	
1.	The students have a working knowledg	ge of calculus, finear argeora, and probability	uicory.	II Cubic
1.	knowledge of Matlab will be useful	c of calculus, finear argeora, and probability	theory.	TT Ouble
Module		c of calculus, finear argeora, and probability	Hrs.	1
	knowledge of Matlab will be useful Content	tical pattern recognition; Three learning		1
Module	knowledge of Matlab will be useful Content Introduction: The nature of statist		Hrs.	1
Module	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers.	Hrs.	1
Module	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers.	Hrs.	1
Module 1 2	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination a error rate classification; error probability.	Hrs. 6	1
Module 1	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statistics	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination error rate classification; error probability. ical issues; Sources of classification error;	Hrs. 6	1
Module 1 2	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statists Bias and variance; Three approaches	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination a error rate classification; error probability. ical issues; Sources of classification error; es to classification: density estimation,	Hrs. 6	1
Module 1 2	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statists Bias and variance; Three approacher regression and discriminant analysis	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination error rate classification; error probability. ical issues; Sources of classification error;	Hrs. 6	1
Module 1 2 3	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statists Bias and variance; Three approacher regression and discriminant analysis methods; Failure of MLE.	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination a error rate classification; error probability. ical issues; Sources of classification error; es to classification: density estimation, s; Empirical error criteria; Optimization	Hrs. 6	1
Module 1 2	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statists Bias and variance; Three approacher regression and discriminant analysis methods; Failure of MLE. Parametric Estimation: Maximum	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination error rate classification; error probability. ical issues; Sources of classification error; es to classification: density estimation, s; Empirical error criteria; Optimization Likelihood estimation, Gaussian mixture	Hrs. 6	1
Module 1 2 3	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statists Bias and variance; Three approacher regression and discriminant analysis methods; Failure of MLE. Parametric Estimation: Maximum models, Expectation-maximization me	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination a error rate classification; error probability. ical issues; Sources of classification error; es to classification: density estimation, s; Empirical error criteria; Optimization	Hrs. 6	1
Module 1 2 3	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statists Bias and variance; Three approacher regression and discriminant analysis methods; Failure of MLE. Parametric Estimation: Maximum models, Expectation-maximization memodel.	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination error rate classification; error probability. ical issues; Sources of classification error; es to classification: density estimation, error probability estimation. Likelihood estimation, Gaussian mixture ethod, Baysian estimation, Hidden markov	Hrs. 6 6 6	1
Module 1 2 3	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statists Bias and variance; Three approacher regression and discriminant analysis methods; Failure of MLE. Parametric Estimation: Maximum models, Expectation-maximization memodel. Nonparametric Techniques: Parze	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination error rate classification; error probability. ical issues; Sources of classification error; es to classification: density estimation, s; Empirical error criteria; Optimization Likelihood estimation, Gaussian mixture	Hrs. 6	1
Module 1 2 3 4	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statists Bias and variance; Three approacher regression and discriminant analysis methods; Failure of MLE. Parametric Estimation: Maximum models, Expectation-maximization memodel. Nonparametric Techniques: Parzemethod.	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination error rate classification; error probability. ical issues; Sources of classification error; es to classification: density estimation, s; Empirical error criteria; Optimization Likelihood estimation, Gaussian mixture ethod, Baysian estimation, Hidden markov en window method, Nearest Neighbor	Hrs. 6 6 6 4	1
Module 1 2 3	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statists Bias and variance; Three approacher regression and discriminant analysis methods; Failure of MLE. Parametric Estimation: Maximum models, Expectation-maximization memodel. Nonparametric Techniques: Parzemethod. Feature Selection: Class Seperability	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination error rate classification; error probability. ical issues; Sources of classification error; es to classification: density estimation, ex; Empirical error criteria; Optimization Likelihood estimation, Gaussian mixture ethod, Baysian estimation, Hidden markov en window method, Nearest Neighbor Measures- Divergence, Scatter Matrices,	Hrs. 6 6 6	1
Module 1 2 3 4	Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statists Bias and variance; Three approacher regression and discriminant analysis methods; Failure of MLE. Parametric Estimation: Maximum models, Expectation-maximization memodel. Nonparametric Techniques: Parzemethod. Feature Selection: Class Seperability dimensionality reduction, similarity	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination error rate classification; error probability. ical issues; Sources of classification error; es to classification: density estimation, e; Empirical error criteria; Optimization Likelihood estimation, Gaussian mixture ethod, Baysian estimation, Hidden markov en window method, Nearest Neighbor Measures- Divergence, Scatter Matrices, measures, feature selection criteria and	Hrs. 6 6 6 4	1
Module 1 2 3 4	knowledge of Matlab will be useful Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statists Bias and variance; Three approacher regression and discriminant analysis methods; Failure of MLE. Parametric Estimation: Maximum models, Expectation-maximization memodel. Nonparametric Techniques: Parzemethod. Feature Selection: Class Seperability	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination error rate classification; error probability. ical issues; Sources of classification error; es to classification: density estimation, e; Empirical error criteria; Optimization Likelihood estimation, Gaussian mixture ethod, Baysian estimation, Hidden markov en window method, Nearest Neighbor Measures- Divergence, Scatter Matrices, measures, feature selection criteria and	Hrs. 6 6 6 4	Marks
Module 1 2 3 4 5 6	Content Introduction: The nature of statist paradigms; The sub-problems of pattern recognition system; Comparing Bayes Decision Theorem: Bayes class functions, Optimal decisions; Minimum Parametric approaches Basic statists Bias and variance; Three approacher regression and discriminant analysis methods; Failure of MLE. Parametric Estimation: Maximum models, Expectation-maximization memodel. Nonparametric Techniques: Parzemethod. Feature Selection: Class Seperability dimensionality reduction, similarity	tical pattern recognition; Three learning ern recognition; The basic structure of a classifiers. sifier; Linear and non linear discrimination error rate classification; error probability. ical issues; Sources of classification error; es to classification: density estimation, e; Empirical error criteria; Optimization Likelihood estimation, Gaussian mixture ethod, Baysian estimation, Hidden markov en window method, Nearest Neighbor Measures- Divergence, Scatter Matrices, measures, feature selection criteria and	Hrs. 6 6 6 4	1

CO1: Understand the various techniques and algorithms involved in pattern recognition research.

CO2: Categorize the various pattern recognition techniques into supervised and unsupervised.

CO3: Illustrate the artificial neural network based pattern recognition.

CO4: Apply pattern recognition techniques to real-world problems such as document analysis and recognition.

CO5: Implement simple pattern classifiers, classifier combinations, and structural pattern recognizers.

Learning Resources:

- 1. Duda, R.O., Hart, P.E., and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001.
- 2. S.Theodoridis and K.Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009
- 3. J.T.Tou and R.C. Gonzalez:Pattern Recognition Principles, Addison-Wesley, London.
- 4.Marsland, S. Machine Learning: An Algorithmic Perspective. CRC Press. 2009. (Also uses Python.)
- 5. Bishop, C. M. Pattern Recognition and Machine Learning. Springer. 2007.
- 6. Theodoridis, S. and Koutroumbas, K. Pattern Recognition. EditionAcademic Press, 2008.
- 7.Russell, S. and Norvig, N. Artificial Intelligence: A Modern Approach. Prentice Hall Series in Artificial Intelligence. 2003.
- 8.Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press. 1995.
- 9. Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning. Springer. 2001.
- 10. Koller, D. and Friedman, N. Probabilistic Graphical Models. MIT Press. 2009.

GeneralLinks:

Pattern Recognition: Pattern Recognition Course on the Web (by Richard O. Duda).

Name of the course:		VLSI Design and Algorithm
Course Code: OEC (IT/CS) 702A Duration: 6 months		Semester: 7 th
		Maximum Marks: 100
Teaching Scheme		Examination Scheme
Theory C	ontact Hrs.: 3 hrs./week	Mid Semester-1 Exam: 15 Marks
Credit Po	int: 3	Mid Semester-2 Exam: 15 Marks
		Assignment, Quiz & class attendance: 20 Marks
		End Semester Exam: 75 Marks (to be mapped into 50 marks)
Objective	2:	
1.	Basic idea about MOS transistor mod	els and fundamental idea about CMOS inverter.
2.	Able to realize the dynamic and static	power dissipation of CMOS.
3.	Basic idea about Placement & Routin	g mechanism of CMOS VLSI circuit.
4.	Idea about Verification and Testing of CMOS circuit, Types of testing, Fundamental idea about FPGA.	
5.	Basic idea about Computer aided design tools for digital systems.	
6.	Combinational and Sequential Circuit design using VHDL.	
Pre-Requisite:		
1.	Physics (CS/IT 102)	
2.	Computer Architecture (IT 507)	

Module	Content	Hrs.	Marks
1.	Introduction to CMOS: MOS Structure, MOS Transistor models: NMOS,	08	
	PMOS and CMOS Logic, Enhancement & Depletion Transistor, Threshold		
	Voltage, MOS device design equations, the inverter, MOS transistor switches.		
	NMOS Inverter and Transfer Characteristics, pull up and pulldown ratios of		
	NMOS, Alternative forms of pull up the CMOS Inverter and transfer		
	characteristics. CMOS Inverter Delays. Combinational Logic, NAND gate, NOT		
2	Gate, Compound Gates, Multiplexers, Memory-Latches and Registers.	0.2	
2.	Power Dissipation: Static dissipation, Dynamic dissipation, short-circuit	02	
3.	dissipation, total power dissipation. Placement & Routing: Mincut based placement – Iterative improvement	04	
3.	placement simulated annealing. Segmented channel routing – maze routing –	04	
	routability and routing resources.		
4.	Verification and Testing: Verification: logic simulation design validation –	05	
٠,	timing verification – Testing concepts: failures – mechanisms and faults – fault	03	
	coverage – ATPG methods – types of tests – FPGAs – programmability failures		
	- design for testability.		
5.	Introduction to Computer aided design tools for digital systems: Hardware	15	
	description languages, Introduction to VHDL. Design Methods: Behavioural		
	Synthesis, RTL synthesis. Introduction to behavioral, dataflow and structural		
	models.		
6.	Applications of VHDL: Combinational Circuit Design such as Multiplexers,	04	
	Encoders, Decoders, Code Converters, Comparators, and Implementation of		
	Boolean functions etc., Sequential Circuit Design such as Shift registers,		
G 6	Counters etc.		
Course C			
CO1	ppletion of this course the students will be able to - Analize the MOS transistor models and fundamental idea about CMOS inverter.		
CO2	Compare to realize the dynamic and static power dissipation of CMOS.		
CO3	Evaluate the Placement & Routing mechanism of CMOS VLSI circuit.		
CO4	Classify the basic idea about Verification and Testing of CMOS circuit.		
CO5	Design Combinational and Sequential Circuit using VHDL.		
Learning	Resources:		
1.	CMOS Digital Integrated Circuit, S.M.Kang & Y .Leblebici ; TMH.		
2.	Algorithm for VLSI Design & Automation; N.Sherwani, Kluwer.		
3.	Principle of CMOS VLSI Design, Weste and Eshrighian; Pearson Education.		
4.	Modern VLSI Design: system on silicon, Wayne Wolf, Addison; Wesley Longma	n Publis	sher.
5.	"Basic VLSI Design" Douglas A. Pucknell & Kamran Eshranghian; PHI		
6.	"CMOS Circuit Design, Layout & Simulation", R.J.Baker, H.W.Lee, D.E. Boyee,	PHI	

Name of the course:	Digital Signal Processing
Course Code:OEC(IT/CS)702B	Semester: 7 th
Duration: 6 months	Maximum Marks: 100

Teaching Scheme		Examination Scheme		
Theory C	eory Contact Hrs.: 3 hrs./week Mid Semester-1 Exam: 15 Marks			
Tutorial C	ial Contact Hrs.: Mid Semester-2 Exam: 15 Marks			
Credit Po	redit Point: 3 Assignment, Quiz & class attendance: 20 Marks			
		End Semester Exam: 75 Marks (to be mapped) marks)
Objective	۵۰	End Semester Endin 75 Warns (to be mapped		
1.		amount trung of discusses time signals and systems		
	^ ^	erent type of discrete time signals and systems		•
2.	***	ls for frequency domain analysis of discrete tin	ne signa	ls.
3.	V1 0	filters and compare their performances		
Pre-Requ	ıisite			
1.	Communication engineering (ES(CS	S/IT)409)		
Module		Content	Hrs	Marks
1	Discrete-time signals		4	
	Concept of discrete-time signal, l	basic idea of sampling, sampling theorem,		
	sequences - periodic, energy, pow	er, unit-sample, unit-step, unit-ramp, real &		
	complex exponentials, arithmetic op	perations on sequences.		
2	LTI Systems		6	
		response, derivation for the output sequence,		
	1	nd analytical methods to compute convolution		
		eises, properties of convolution, stability and		
	causality conditions			
3	Z-Transform		6	
		ne and z-plane, unit circle, convergence and		
4	ROC, properties of Z-transform, inverse Z-transform		9	
4	Discrete Fourier Transform Concept, and relations for DET/II	OFT, Twiddle factors and their properties,	9	
	1	OFT, DFT/IDFT as linear transformations,		
	_	f DFT/IDFT by matrix method, multiplication		
	_	ering of long data sequences – Overlap-Save		
	and Overlap-Add methods with example and Overlap			
5	Fast Fourier Transform	*	5	
	Radix-2 algorithm, decimation-in-tin	me, decimation-in-frequency FFT algorithms.		
6	Digital Filter		6	
	Basic concepts of IIR and FIR dig	gital filters. design of Butterworth IIR filter		
		r transformation method, design of FIR filter		
	using window method.			
Course C				
	repletion of this course the students wil			
CO1		ent discrete time signals and systems.		
CO2	describe Z transform of discrete time			
CO3	apply the concepts of sampling in fr	equency domain for computing DFT and IDFT	of discr	ete time
	sequences.			
CO4	compare the performance of different Fast Fourier Transform(FFT) techniques.			
CO5	design different types of Digital Filters.			

Learni	Learning Resources:		
1.	Digital Signal Processing – Principles, Algorithms and Applications, J.G.Proakis&D.G.Manolakis, Pearson Ed.		
2.	Digital Signal Processing, P. Rameshbabu, Scitech Publications (India)		
3.	Digital Signal processing – A Computer Based Approach, S.K.Mitra, TMH Publishing Co		
4.	Digital Signal Processing, S.Salivahanan, A.Vallabraj& C. Gnanapriya, TMH Publishing Co		

Name of the course:		MANAGEMENT INFORMATION SY	STEM	
Course Code: OEC(IT/CS)702C		Semester: 7 th		
Duration: 6 months		Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory C	eory Contact Hrs.: 3 hrs./week Mid Semester-1 Exam: 15 Marks			
Credit Po	int: 3	Mid Semester-2 Exam: 15 Marks		
		Assignment, Quiz & class attendance: 20	Marks	
		End Semester Exam: 75 Marks (to be mapp	ed into 5	0 marks)
Objective	2:			
1.	To understand the structure of Manag	gement Information Systems (MIS) and diffe	erent type	es of
	Information Systems.			
2.	To learn about MIS Planning and De	velopment and analyzing of Economic Beha	vior.	
3.	•	en MIS and BPR and also have knowledge a	bout ER	P and E-
4	enterprise System.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	
4.	**	and current trends in MIS along with security	issues.	
Pre-Requ				
1.	Economics for Engineers [HS(CS/IT)303]		
2.	Industrial Management [HS (CS/IT)6	504]		
Module	Content		Hrs.	Marks
1.	Understanding MIS and Con-	ceptual Foundations: Introduction to	5	
		ms, MIS Categories, Managers and		
		Making Process, System Approach to		
	_	of Management Information System,		
	Kinds of Information Systems, Go		_	
2.	_	MIS Organization Structure: MIS	5	
		at Management levels, Strategic Level ning, Economic and Behavior Theories		
3.		Re – Engineering, Improving a process	4	
<i>J</i> .	in BPR, Object Oriented methodo		7	
4.	-	and E-Enterprise System: Basics of	6	
	_	Large Organizations, Organization of		
		siness, E-commerce, E-communication,		
	E-collaboration			
5.	MIS – Support Models and	d Knowledge Management: Market	8	
	Research Methods, Ratio Analysi	s for Financial Assessment, Procedural		

	Models, Project Planning and Control Models, Operations Research		
	Models: Mathematical Programming Techniques, Knowledge		
	Management		
6.	Ethical Issues and Trends in MIS: Control Issues in Management 8		
	Information Systems, Security Hazards, Ethical Issues, Technical		
	solutions for Privacy Protection, Decision Support Systems (DSS), Types		
	of Database Users, Designing of DBMS, Artificial Intelligence (AI),		
	Basic Network Terminologies, The Intranet and the Extranet		
	Outcomes:		
	apletion of this course the students will be able to -		
CO1	explain MIS, Structure of MIS as well as different kinds of Information Systems.		
CO2	make use of the concept of MIS Planning, Development and Economic and Behavior Theories.		
CO3	discuss the relation between MIS and BPR.		
CO4	apply ERP, E-business, E-commerce, E-communication and E-collaboration.		
CO5	design MIS- Support Models and the concept of Knowledge Management.		
CO6	illustrate the Security Hazards in MIS and the applications currently trending in MIS.		
Learning	Resources:		
1.	Kenneth C. Laudon, Jane P. Laudon, Management Information System, Pearson Education India, ISBN: 9789332548909		
2.	Ramesh Behl, James A. O'Brien, George M. Marakas, Management Information Systems,		
	McGraw Hill Education India, ISBN: 9789353164652		
3.	S. Sadagopan, Management Information Systems, PHI Learning, ISBN: 9788120348929		
4.	Indrajit Chatterjee, Management Information Systems, PHI Learning, ISBN: 9788120340237		
5.	Girdhar Joshi, Management Information Systems, Oxford University Press India, ISBN: 9780198080992		
6.	Oz Effy, Management Information Systems, Cengage Learning Inc., ISBN: 9780619215385		

Name of the course:		BIG DATA ANALYTICS
Course Code: OEC(IT/CS)702D		Semester: 7 th
Duratio	n: 6 months	Maximum Marks: 100
Teachin	ng Scheme	Examination Scheme
Theory	Contact Hrs.: 3 hrs./week	Mid Semester-1 Exam: 15 Marks
Credit P	oint: 3	Mid Semester-2 Exam: 15 Marks
		Assignment, Quiz & class attendance: 20 Marks
		End Semester Exam: 75 Marks (to be mapped into 50 marks)
Objecti	ve:	•
1.	To understand Big Data and its uses	
2.	To provide an overview of Hadoop	and its Ecosystem
3.	To understand MapReduce Jobs	
4.	. To learn HDFS concepts	
Pre-Requisite		

1.	Database Management System [PC(CS/IT)512]			
Module	Content	Hrs.	Marks	
1.	Big Data Overview and Applications	4		
	Definition and History of big data, Elements of big data, Advantages and			
	Disadvantages of big data, Using big data in businesses			
2.	Technologies for handling Big Data	6		
	Introduction to Hadoop, Functioning of Hadoop, Cloud Computing for big data			
3.	Understanding Hadoop Ecosystem	9		
	HDFS, MapReduce, Hbase, Hive, Pig, Big SQL			
4.	MapReduce	8		
	Anatomy of a MapReduce Job Run, Failures, Job Scheduling, Shuffle and Sort,			
	Task Execution, MapReduce Types and Formats, MapReduce Features			
5.	HDFS(Hadoop Distributed File System)	9		
	Design of HDFS, HDFS Concepts, Command Line Interface, Hadoop file			
	system interfaces, Data Flow, Data Ingest with Flume and Sqoop and Hadoop			
	archives, Hadoop I/O			
	Outcomes:			
	apletion of this course the students will be able to -			
CO1	explain Big Data and its business applications			
CO2	apply the technologies for handling Big Data			
CO3	classify the components of Hadoop Ecosystem			
CO4	demonstrate Jobs in Hadoop Environment			
CO5	analyze data on Distributed File System			
Learning	Resources:			
1.	Seema Acharya, Subhashini Chellappan, Big Data and Analytics, Wiley India Pvt. Ltd, ISBN:			
	9788126579518			
2.	Tom White, Hadoop: The Definitive Guide - Storage and Analysis at Internet Sca	le, Shroi	ff	
	Publishers & Distributors Pvt Ltd, ISBN: 9789352130672			
3.	Mark Hornick, Tom Plunkett, Using R to Unlock the Value of Big Data, McGraw	-Hill Ed	ucation -	
	Europe, ISBN: 9780071824385			
4.	Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer-Verlag Ber	lin and		
	Heidelberg GmbH & Co. KG, ISBN: 9783540430605			
5.	Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman, Mining of Massive Dat	asets, Ca	mbridge	
	University Press, ISBN: 9781316638491			
6.	Bill Franks, Taming The Big Data Tidal Wave, John Wiley & Sons Inc, ISBN: 9781118208786			

Name of the course:	ARTIFICIAL INTELLIGENCE
Course Code: OEC(IT/CS)702 E	Semester: 7 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
TTI C	
Theory Contact Hrs.: 3 hrs./week	Mid Semester-1 Exam: 15 Marks

Credit Po	int: 3 Assigni	ment, Quiz & c	lass attendance: 20	Marks	
	End Se marks)	mester Exam:	75 Marks (to be map	ped into	50
Objective	e:				
1.	The main purpose of this course is to provide t	he fundamenta	l knowledge to the stu	dents so	o that
	they can understand what AI is.		-		
2.	Apply the basic principles, models, and algorit	thms of AI to re	ecognize, model, and	solve pr	oblems
	in the analysis and design of information syste				
3.	Analyze the structures and algorithms of a sele	ection of technic	ques related to search	ing, reas	soning,
	Machine learning, and language processing.				
Pre-Requ					
1.	Strong knowledge of Mathematics. (BS (CS/II	Γ) 101, BS (CS	/IT) 205, BS(CS/IT)3	07).	
2.	Strong knowledge of Design & Analysis of Al	gorithm PC(CS	J/IT)406.		
3.	Basic knowledge of IT Workshop(python) PC	CL(CS/IT)305.			
Module	Content			Hrs.	Marks
1.	Introduction to AI and Agents: Overview of		ŭ	3	
	of AI, Some AI techniques, Environment, N				
	structure of agents, Goal based agents, utility b	<u>~</u>			
2.	Problem Solving: Problem Space & Search	•	•	3	
	space search, production system, problem cha	racteristics, iss	ues in the design of		
2	search algorithms	:6		0	
3.	Search techniques: Searching for solutions; first search, depth first search, depth limit		· ·	8	
	comparing uniform search strategies. Greedy				
	search, Memory bounded heuristic search				
	optimization problems, Hill climbing, S		· ·		
	satisfaction problems, Local search for	constraint sati	sfaction problems,		
	Adversarial search. Games, Optimal decision	s & strategies	in games, Minimax		
	search procedure, Alpha-beta pruning.				
4.	Knowledge & Reasoning, Knowledge a	•	*	6	
	knowledge, Issues in knowledge representati				
	Scripts, Resolution in Predicate Logic,				
	Declarative knowledge, Logic programmi reasoning, Matching, Control knowledge.	ing, Forward	verses backward		
5.	Planning and Learning: Overview, componen	uts of a plannin	g system Forms of	8	
<i>J</i> .	learning, Basic knowledge of machine			0	
	Unsupervised Learning and Reinforcement lea	_	-		
	learning & Genetic learning.	<i>U</i> , 1	ζ,		
6.	Probabilistic reasoning. Semantics of Baye	esian network	s, Dempster-Shafer	8	
	theory, Basic idea about Fuzzy Sets & Fuzzy L	Logic.			
	Outcomes:				
	ppletion of this course the students will be able to				
CO1	analyze the fundamental knowledge of AI, Def	fine the probler	n using state space sea	arch and	1
000	Problem solving using agents.		11		
CO2	apply the models and algorithms of AI to recog	gnıze and solve	problems using unifor	rm sear	ch

	strategies and algorithm.		
CO3	explain the knowledge representation and reasoning and logic programming in AI.		
CO4	develop the knowledge of the more advanced topics of AI such as machine learning, deep		
	learning, neural net learning & genetic Learning.		
CO5	analyze probabilistic reasoning, Demster-Shafer theory, Fuzzy sets and Fuzzy Logic.		
Learnin	g Resources:		
1.	E. Charniak, et.al., Introduction to Artificial Intelligence, PEARSON Education. P. H. Winston,		
	Artificial Intelligence, PEARSON		
2.	C. F. Camerer, "Artificial intelligence and behavioural economics".		
3.	Logic & Prolog Programming, Saroj Kaushik, New Age International		
4.	"Human Compatible: Artificial Intelligence and the Problem of Control" by Stuart Russell.		
5.	"Artificial Intelligence: A Modern Approach" by Stuart Russell and Peter Norvig.		
6.	Artificial Intelligence and soft computing: behavioral and cognitive modelling of the human brain,		
	Amit Konar, CRC press.		

Name of the course		Web Technology Lab.		
Cours	se Code: PEC(IT)704A-L	Semester: 7th		
Durat	tion: 6 months	Maximum marks:100		
Teach	ning Scheme	Examination scheme:		
Practical: 3 hrs./week		Laboratory journal book and Results: 40 marks		
Credit	Points: 1.5	Viva Voce conducted during semester: 40 marks		
		Attendance, Overall conduct, Skills etc.: 20 marks		
Objec	tive:			
1.	To design and deploy web enabled	services with the help of appropriate technologies.		
2.	To maintain the modules associate	d with web-based applications.		
3.	To solve the common ecommerce	site design and maintenance problems.		
Pre-R	equisite:			
1.	Object Oriented Methodology [PC	(CS/IT)513]		
Labor	ratory Experiments:			
1.	Designing of web pages using HT	ML, CSS.		
2.	Client-side scripting using java script.			
3.	XML.			
4.	CRUD operations using JDBC.			
5.	Servlets.			
6.	JSP.			
7.	Session Management.			
8.	Case study on designing web-application module.			
9.	Demonstration on AJAX.			

Course	Outcomes:				
After co	After completion of this course the students will be able to -				
CO1	Differentiate among various types of web application development technologies.				
CO2	Design the front end of any web application with the help of associated technologies.				
CO3	Apply the skills related to client side validation technique and able to recognize different types of				
	document type definition in web design.				
CO4	Work with different database management system and also be able to perform different CRUD				
	operations.				
CO5	Create dynamic web pages and also be able to develop server side scripting for server side				
	processing.				
CO6	Apply user sessions in dynamic web project and also be able to design business logic.				
Learnii	ng Resources:				
1	Java EE for Beginners, Sharanam Shah, SPD Publications				
2	Beginning Java EE 5: From Novice to Professional, Mukhar and Zelenak, Apress				
3	Professional Java Server Programming, Allamaraju, WROX Publishers				
4	Java Server Programming Java EE 7 (J2EE 1.7), Kogent Learning Solutions Inc.				

Name of the course		Internetworking Lab.		
Course	e Code: PEC(IT)704B-L	Semester: 7th		
Durati	on: 6 months	Maximum marks:100		
Teachi	ing Scheme	Examination scheme:		
Practic	al: 3 hrs./week	Laboratory journal book and Results: 40 marks		
Credit	Points: 1.5	Viva Voce conducted during semester: 40 marks		
		Attendance, Overall conduct, Skills etc.: 20 marks		
Object	ive:			
1.	To learn coding and implementation of	different types client server socket programing.		
2.	To implement simulation based commu	nication.		
3.	To design IP address allocation scheme	and handle basic router configuration.		
4.	To have exposure on some common server configuration.			
Pre-Re	e-Requisite:			
1.	Computer Network lab [PCL(CS/IT)619]			
Labora	atory Experiments:			
1.	Using TCP/IP sockets, Implementation of Echo Server and Client program in Linux using C.			
2.	Programming for error detection using CRC.			
3.	Implementation of data link protocols -	Stop and Wait ARQ in Linux using C		
4.	Initial Setup and Configuration of Graph	hical Network Simulator 3 (GNS3).		
5.	Switch Configuration for PC to PC communication in GNS3.			
6.	Router Configuration for PC to PC communication in GNS3.			
7.	Configuration of DNS server/ Firewall server.			
8.	Designing a scheme for IP address allocation.			
Learni	ing Resources:			

1.	UNIX Network Programming: The sockets networking API, Volume 1 of UNIX Network			
	Programming, W. Richard Stevens, Pearson Education			
Course	Course Outcomes:			
After co	After completion of this course the students will be able to -			
CO1	Implement basic concepts of client/server models and communicate using socket programming.			
CO2	Implement transport layer concepts and protocols; including connection oriented and connection-less			
	models, techniques to provide reliable data delivery.			
CO3	IMplement data link layer concepts and protocols (Stop and Wait, including CRC)			
CO4	Simulate basic networking environments, switching and routing.			
CO5	Configure some application servers.			
CO6	Determine the structure and organization of computer networks, IP addressing allocation schemes.			

Name o	f the course	Project 2		
Course	Code: PROJ(IT)702	Semester: 7 th		
Duratio	n: 6 months	Maximum Marks: 100		
Teachin	ng Scheme	Examination Scheme		
Project '	Work: 12 hours/week	Internal Evaluation: 80 Marks		
Credit P	oints: 6	End Semester (External) Exam: 20 Marks		
Objecti	ve:			
1.	To apply the concept related to mathem	atics and computer Sc.		
2.	Express a sound technical knowledge to undertake problem identification and solution methodology on project topic.			
3.	To demonstrate the techniques those ha	ve been used to implement the idea.		
4.	Propose work solutions to intricate problems exploiting a systematic approach.			
Pre-Rec	Pre-Requisite			
(As requ	s required)			
Learnin	g Resources:			
(As requ	ired)			
Course	Course Outcomes:			
After co	mpletion of this Project 2 the students wi			
CO1	Demonstrate a sound technical knowledge to undertake problem identification and solution			
	approach on project topic.			
CO2	Demonstrate the ability to locate and use technical information from multiple sources.			
CO3		x problems utilizing a systematic approach.		
CO4	Perform as a team-member and to focus	on getting a working project done on time.		
CO5	Communicate effectively in speech adocument.	and writing to make presentation and prepare technical		

FOURTH YEAR SECOND SEMESTER

	8 th SEMESTER							
SL. NO.	PAPER CODE	PAPER NAME	L	Т	P	CONTACT HRS./WEEK	CREDIT	
THE	THEORY							
01	PEC(IT)805	Elective-V	3	0	0	3	3	
02	OEC(IT/CS)803	Open Elective-III	3	0	0	3	3	
SESS	SESSIONAL/PRACTICAL							
01	PROJ(IT)803	Project 3	0	0	16	16	8	
02	CVV(IT)802	Comprehensive Viva Voce	0	0	0	0	1	
TOTAL 6				0	16	22	15	

PEC(IT)805 OEC(IT/CS)803
A: E-Commerce A: Image Processing

B: Data Mining
B: Software Project Management
C: Mobile Communication
C: Social Network Analysis
D: Internet of Things
D: Quantum Computing

E: Data Science E: Bioinformatics

Name of	the course	E-Commerce			
` ′		Semester: 8 th			
		Maximum Marks: 100	Maximum Marks: 100		
Teaching Scheme Examination Scheme					
Theory: 3 hrs./week Mid Term I: 15 Marks					
Credit Po	Credit Points: 3 Mid Term II: 15 Marks				
		Assignments, Test based on assignments	ents,	Quizzes,	
	Presentations, Attendance etc.: 20 Marks				
End Semester Exam: 75 Marks (converted to			to 50 M	(arks)	
Objective	e:	,			
1.	To apply basic design tools & techni	ques for developing E-Commerce application.			
2.	To recognize the underlying architec	ture of E-Commerce applications.			
3.		ite design and maintenance problems.			
Pre-Requ					
1.	Object Oriented Methodology PC(Co	S/IT)513			
2.	Database Management System PC(C	•			
3.	Web Technology PEC(IT)704A	.5/11)512			
	Content		IIma	Maulia	
Module			Hrs.	Marks	
1	Introduction to E-Commerce	Handrian accidentate Francisco and	4		
	Trade Cycle, Electronic Markets, Int	, Hardware requirements, Ecommerce and			
2	Business to Business E-Commerce		6		
2): Technology, Standards (UN/EDIFACT),	0		
	_	Agreements, Security, EDI and Business,			
	Inter-Organizational E-commerce.	3 · · · · · · · · · · · · · · · · · · ·			
3	Legal issues		5		
	Risks: Paper Document vs. Electro	onic document, Authentication of Electronic			
	document, Laws, Legal issues for In	nternet Commerce: Trademarks and Domain			
	names, Copyright, Jurisdiction issu	ues, Service provider liability, Enforceable			
	online contract.				
4	Security Issues		6		
		and Asymmetric Cryptosystems, Digital			
		saging, Secure Electronic Transaction (SET)			
5	Protocol, Financial transactions over Business to Consumer E-Commerce	· · · · · · · · · · · · · · · · · · ·	8		
3		, Page on the Web, Elements of E-Commerce	0		
	with case studies.	, rage on the web, Elements of E commerce			
6	E-business		7		
		plies and support, Electronic Newspapers,			
		line Share Dealing, E-Diversity with Case			
	studies.	-			
Course C	Outcomes:				
After con	npletion of this course the students wil	l be able to -			

CO1	Identify various types of module development technologies related to E-Commerce applications.			
CO2	Select the module of any E-Commerce application with the help of associated technologies.			
CO3	Organise different types of E-Commerce sites in the implementation of E-Commerce module.			
CO4	Execute security and legal issues in E-Commerce.			
CO5	Describe the knowledge of E-Business.			
Learnii	Learning Resources:			
1	E-Commerce-Strategy, Technologies & Applications by David Whitley, TMH			
2	E. Commono, The outting adag of hydroge by Vemlech V. Deigi TMII			
2	E-Commerce- The cutting edge of business by Kamlesh K. Bajaj, TMH			

Name of the course		Data Mining			
Course Code:PEC(IT)805B Duration: 6 months		Semester: 8 th			
		Maximum Marks: 100			
Teaching	Scheme Ex	amination Scheme			
Theory: 3	hrs./week Mi	d Term I: 15 Marks			
Credit Po	ints: 3 Mi	d Term II: 15 Marks			
		signments, Test based on assignments, izzes, Presentations, Attendance etc.: 20 l	•	se tests,	
	Enc	d Semester Exam: 75 Marks (to be mapped	d into 50) marks)	
Objective	e:				
1.	To understand the principles of Data war	rehousing and Data Mining.			
2.	To be familiar with the Data warehouse	To be familiar with the Data warehouse architecture and its Implementation.			
3.	To know the Architecture of a Data Mining system.				
4.	To understand the various Data preprocessing Methods.				
5.	To understand and apply various Classification and Clustering techniques using tools.				
6.	To know the Association Rule Mining.				
7.	To understand various Web Mining tech	niques.			
Pre-Requ	nisite				
1.	Database Management System PC(CS/I'	T)512			
2.	Basic Statistics				
Module	Content		Hrs.	Marks	
1.	Data Warehousing: Define Data Warehouse, The building blocks of a Data 4 warehouse, Warehouse Schema, Data Warehouse Architecture, Infrastructure and Metadata Management, Data Marts, ETL, OLAP, MOLAP.				
2.		of data mining, related concepts, Data sses, Data Preprocessing – Cleaning, and discretization.	3		
3.	_	Classification, Supervised Learning,	6		

4.	Clustering: Define clustering, Types of data, Partitioning Methods (K-Means, K-Medoids), PAM, CLARA, CLARANS, Hierarchical Methods (Agglomerative, Divisive), Distance and similarity Function.	
5.	Association rules: Define Association Rule mining, Market Basket Analysis, Apriori Algorithm, FP tree Algorithm, Iceberg Queries, Advanced Association Rules (concepts only), Applications of Data Mining.	
6.	Web Mining: Web Content Mining, Web Structure Mining, Web Usage Mining 4	
Course	Outcomes:	
After co	mpletion of this course, the student will be able to-	
CO1	Implement Data warehouse system and perform business analysis with OLAP tools.	
CO2	Apply suitable pre-processing and visualization techniques for data analysis.	
CO3	Identify appropriate classification and clustering techniques for data analysis.	
CO4	Apply frequent pattern and association rule mining techniques for data analysis.	
CO5	Explain Web mining techniques.	
Learnin	g Resources:	
1.	Jiawei Han, Micheline Kamber and Jian Pei "Data Mining Concepts and Techniques", Third	
	Edition, Elsevier, 2011, ISBN: 9780123814807	
2.	Arun K Pujari, "Data Mining Techniques", 3rd Edition, Universities Press,	
	ISBN: 9788173718847	
3.	Pang-Ning Tan, Vipin Kumar, Michael Steinbanch, "Introduction to Data Mining",	
	Pearson Education, ISBN: 9780321420527	
4.	Alex Berson and Stephen Smith, "Data Warehousing, Data Mining and OLAP", Tata	
	McGraw-Hill Edition, ISBN: 9780070587410	
5.	K.P. Soman, Shyam Diwakar and V. Ajay "Insight into Data mining Theory and Practice", Easter	
	Economy Edition, Prentice Hall of India, 2006, ISBN :9788120328976	
6.	G. K. Gupta "Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice	
	Hall of India, 2006, ISBN: 9788120350021	
7.	Pang-Ning Tan, Michael Steinbach and Vipin Kumar "Introduction to Data Mining", Pearson Education, 2007, ISBN: 9789354491047	

Name of t	the course	Mobile Communication	
Course C	ode: PEC(IT)805C	Semester: 8 th	
Duration	: 6 months	Maximum Marks: 100	
Teaching	Scheme	Examination Scheme	
Theory: 3	B hrs./week	Two Mid term Exams: 30 Marks	
Credit Points: 3		Assignment & Quiz: 10 Marks	
		Term paper, Presentation on selected topics: 10 Marks	
		End Semester Exam: 75 Marks (to be mapped into 50 marks)	
Objective	•		
1.	1. To study the concept of mobile communication and evolution of mobile network		
2.	To understand cellular concepts and improvements cell capacity		
3. To study wireless network and different protocol in physical and data link layer			

4.	To be familiar with mobile IP and mobile TCP		
5.	To study mobile routing and mobile security		
Pre-Requ	nisite		
1.	Computer Networks [PC(CS/IT)617]		
Module	Content	Hrs.	Marks
1	Introduction: A General Overview: History of wireless communication, Multiplexing, Multiple Access basics and Different generations of Cellular Telephony: GSM, GPRS, CDMA2000, UMTs, LTE	6	17
2	Cellular Networks: Cellular Concept, Frequency Reuse, Channel Allocation Management, Call Setup, Location Management, Cell Handoffs; Interference: Co-channel and Adjacent Interference. System Capacity, Improving Cell Capacity and Coverage: Cell Splitting, Sectoring, Repeaters and Microcell Zone Concept.	7	19
3	Wireless Networks: Infrastructure and ad-hoc network, IEEE 802.11: System and Protocol Architecture, Physical and MAC Layer. Media Access Techniques – ALOHA, CSMA. Bluetooth: Architecture, Radio Layer, Baseband Layer, Link Management Protocol, L2CAP and Security. Wi-Fi and WiMax.	8	22
4	Mobile Network Layer: Mobile IP, IP Packet Delivery, Agent Discovery, Registration, Tunnelling and Encapsulation, Optimizations and Reverse Tunnelling, Ad-hoc network, Proactive and reactive routing	6	17
5	Mobile Transport Layer: Introduction, Traditional TCP: Congestion Control, Slow Start, Fast Retransmit and Implications of Mobility. Classical TCP Improvements: Indirect TCP, Snooping TCP, Mobile TCP and Fast Retransmit/fast recovery.	6	17
6	Mobile Security: Threats, Vulnerabilities, Attacks, Integrity, Confidentiality, malware, Policies.	3	8
Learning	Resources:	I	•
1	J. Schiller, Mobile Communications, Addison –Wesley		
2	T. S. Rapport, Wireless Communications, Principle and Practices		
3	Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, Princ Computing, Springer	ciples o	f Mobile
4	W.C.Y. Lee - Mobile Cellular Communications, 2nd Edition, MC Graw Hill.		
	Outcomes:		
	apletion of this course students will be able to-		
CO1	Compare different mobile communication technologies and evolution of mobile network		
CO2	Illustrate different methodologies for improving cell capacity in cellular network		
CO3	Analyze different wireless communications and access techniques		
CO4	Illustrate MobileIP and different routing models for ad hoc network		
CO5	Assess different transport layer protocols in mobile communication		
CO6	Analyze threats and vulnerabilities in mobile network and relate different security policies.		

Name of	the course I	nternet of Things		
Course Code: PEC(IT)805D Semester: 8 th				
Duration	Duration: 6 months Maximum Marks: 100			
Teaching	Scheme E	Examination Scheme		
		Mid Term I Exam: 15 Marks		
Credit Po		Mid Term II Exam: 15 Marks		
	A	Assignments, Quiz, Presentation & Attendan	ce: 20	Marks
	End Semester Exam: 75 Marks (to be mapped) marks)
Objective				
1.	To learn fundamentals, genesis, Intern	net principles and architectures of IoT		
2.		g smart objects and connect them to networ	k	
3.	· ·	devices for sensing real world entities		
4.		of Application protocols and Security in IoT		
Pre-Requ		Application protocols and Security in 101		
1.				
	Computer Networks [PC(CS/IT)617]		TT	Manilan
Module	Content		Hrs.	Marks
1		Evolution of IoT, Challenges and impact of	8	
		dence of Technologies, IoT Networking		
		ies; Overview of the Architecture of an IP-		
		nk Layer, IoT Connectivity Technologies:		
	LoRa, LoRaWAN, NBIoT.	Low-power) Wi-Fi, Bluetooth and BLE,		
2	1	Design: Drivers Behind New Network	6	
_		e IoT World Forum (IoTWF) Standardized		
	· ·	onal Stack, IoT Data Management and		
	•	dge Computing, The Hierarchy of Edge,		
	Fog, and Cloud.			
3	Prototyping Embedded Devices	: Sensors, Actuators, Micro-Electro-	6	
	Mechanical Systems (MEMS) and S	Smart Objects, Wireless Sensor Network		
	and its communication protocol,	Machine to Machine Communication,		
	Introduction to Arduino and Raspberr	y Pi.		
4	IoT Communication Technologies:	: Constrained nodes and networks, Low	8	
	power and lossy networks, Infrastruc	cture Protocols: IPv6, 6LoWPAN, Micro		
	Internet Protocol; Discovery Protocol	l: mDNS; Data Protocols: MQTT, CoAP,		
	AMQP; Overview of Identification pr	otocols and Device management.		
5	Interoperability: Interoperability is	ssues and challenges, IoT interoperability	4	
	standards: EnOcean, DLNA, UPnP;	Overview of Frameworks, Cloud-based		
	Solutions, REST and The Web of Thi			
6		ends: IoT in agriculture and Healthcare,	4	
	Evolution of new paradigms in IoT, F	uture Trends: Bigdata, AI-ML, SDN.		
Learning	Resources:			
1		Patrick Grossetete, Robert Barton, Jer		•
	Fundamentals: Networking Technolo	ogies, Protocols, and Use Cases for the Int	ernet of	Things",

	Pearson Education	
2	Sudip Misra, Anandarup Mukherjee, and Arijit Roy, "Introduction to IoT". Cambridge University	
	Press.	
3	Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", Wiely,	
4	Simone Cirani, Gianluigi Ferrari, Marco Picone, Luca Veltri, "Internet of Things: Architectures,	
	Protocols and Standards", John Wiley & Sons.	
5	Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill	
	Education.	
Course O	Outcomes:	
After com	apletion of this course students will be able to-	
CO1	Explain the issues, Interdependence of technologies, addressing to enable IoT and some	
	connectivity technologies of IoT,	
CO2	Analyse the architectural models, Core IoT Functional stack, Compute stack and Data	
	Management of IoT.	
CO3	Compare the deployment of smart objects and the technologies to connect them to network.	
CO4	Justify the requirement of communication technologies at different layers of IoT applications	
CO5	Examine the IoT framework and interoperability standards involved in it.	
CO6	Analyse different Applications of IoT and the future possibilities IoT.	

Name of the course		Data Science		
Course C	ode: PEC(IT)805E	Semester: 8 th		
Duration	: 6 months	Maximum Marks: 100		
Teaching	Scheme	Examination Scheme		
Theory: 3	3 hours/week	Mid Semester Exams: 30 Marks		
Credit Po	ints: 3	Assignment, Quiz etc.: 20 Marks		
		End Semester Exam: 75 Marks (to be mapp	ed into 5	60 marks)
Objective	:	1		
1.	To provide with the basic understanding of data science and knowledge of proficient data science techniques.		science	
2.	To apply the concept of mathematic	es for data science to analyze the data set.		
3.	To demonstrate the machine learning	g techniques that are vital for data science.		
4.	To evaluate the data visualization be	ased on their design.		
Pre-Requ	iisite:			
1. I	Workshop(Python) PCL(CS/IT)305			
2. N	Iathematics-II(BS(CS/IT)-205)			
Module	Content		Hrs.	Marks
1	Introduction to Data Science:		2	
	Introduction, Terminology, data sciedata, Example applications.	ence process, data science toolkit, Types of		
2	Introduction to R:		4	
	Data types and variables, Data Fran	nes, Recasting and Joining Data Frames,		

	Various mathematical operations, Control structures, Data visualization in R Graphics.		
3	Linear Algebra for Data Science:	3	
3	Linear equations, Distance, Hyperplanes, Halfsapces, Eigenvalues and]	
	Eigenvectors.		
4	Statistical modelling:	3	
7	Probability mass/density functions, Sample statistics, Hypotheses testing.]	
5	Optimization for Data Science:	4	
3	Unconstrained multivariate optimization, Gradient Descent Learning,	-	
	Constrained multivariate optimization, Gradient Descent Learning, Constrained multivariate optimization.		
6	Data Science problems and solution Framework:	5	
O	Data analysis problem solving, Data collection and analysis techniques,		
	Visualization techniques, Application development methods in data science.		
7	Data visualisation:	5	
,	Introduction, Types of data visualisation, Data for visualisation: Data types,		
	Data encodings, Retinal variables, Mapping variables to encodings, Visual		
	encodings. Technologies for visualisation, Bokeh (Python).		
8	Predictive modelling and cross validation techniques:	5	
Ü	Liner regression and Model assessment, Model building and assessment,		
	Multiple Liner regression, Multiple liner modelling and selection,		
9	Classification and clustering:	5	
	Logistic regression, performance measures. Logistic regression implementation		
	in R, KNN clustering, KNN clustering implementation in R, K-means		
	clustering, KNN clustering implementation in R, PCA in high dimensions,		
	Spectral clustering and Cheeger's inequality		
Learnin	g Resources:		
1	Doing Data Science, Straight Talk from The Frontline, Cathy O'Neil and Rachel	Schutt,	O'Reilly.
2	Beginner's Guide for Data Analysis using R Programming, Jeeva Jose, Khanna I	Book Pub	olishing.
3	Data Science for Business: What You Need to Know about Data Mining a	nd Data	analytic
	Thinking, Foster Provost and Tom Fawcett.		
Course	Outcomes:		
After co	mpletion of this course the students will be able to -		
CO1	Illustrate the concepts of basic data science.		
CO2	Solve data science problems using the skills of statistical and optimization methods.		
CO3	Examine the data visualization based on their design.		
CO4	Explain various machine learning techniques in data science.		
CO5	Appraise different Classification and clustering techniques in data science.		

Name of the course	Image Processing
Course Code: OEC(IT/CS)803A	Semester: 8 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs./week	Two Mid Term Exam: 30 Marks

Credit Points: 3		Assignment & Quiz: 10 Marks		
	Term	paper: 05 Marks		
	Preser	ntation on selected topics: 05 Marks		
	End S	emester Exam: 75 Marks (to be mappe	d into :	50 marks)
Objecti	ve:			
1.	To study the concept of image, definitions	related to image		
2.	To study image enhancement techniques in	spatial and time domain		
3.	To study noise in image and image restorati	on		
4.	To study segmentation and compression tec	hniques of image		
5.	To study colour image process techniques			
Pre-Re	quisite:			
1.	Knowledge of Fourier transform			
2.	Knowledge of digital data			
Unit	Content		Hrs	Marks
1	Introduction: Definition, Steps in Digital	Image Processing, Components of an	6	15
	Image Processing System, Applications of	Digital Image Processing, Neighbors		
	of pixel, Adjacency, Connectivity, Region	and Boundary, Distance Measures,		
	Arithmetic/Logic Operations			
2	Digital image formation: Light and the		4	10
	Sensing and Acquisition. Image Samplin			
3	Classification of Digital Images, Image File Image transformation: Need for Trans		4	14
3	Walsh Transform, Hadamard Transform		7	17
	Karheunen-Loeve transform, Hough transfo	· · ·		
4	Image transformation in spatial domain	Basic Gray Level Transformations,	4	14
	Histogram Processing, Convolution and Co	orrelation, Image Smoothing through		
	Spatial Filters, Image Sharpening through S			
5	Image transformation in time domain: In		4	10
	Domain Filters, Image Sharpening the	rough Frequency Domain Filters,		
-	Homomorphic Filtering	Trunca of Image Plan Classification	1	13
6	Image restoration: Types of Degradation, of Image Restoration Techniques, Image I		4	13
	linear Image Restoration Techniques, Bli			
	Noise in Image, Image Denoising			
7	Image segmentation: Classification of Im	age Segmentation Techniques, Edge	4	12
	based Segmentation, Classification of ed	ges, Edge detection, Edge Linking,		
	Region based approach to Segmentation, G	Clustering Techniques, Segmentation		
	based on Thresholding, Watershed Transfor	mation, Active Contour		
8	Image compression: Spatial and Tempor	al Redundancy, Image Compression	4	10
	Models- Lossless and Lossy Compression.			_
9	Colour image processing: Colour Mod	els, Colour Transformation, Image	2	5
Loomi	Segmentation based on Colour ng Resources:			<u> </u>
		Jondo Dogram		
1.	Digital Image Processing, Gonzalves and W	oous, Pearson		

2.	Digital Image Processing, Jahne, Springer India	
3.	Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab,	
	Solomon and Breckon, Wiley	
Course C	Outcomes:	
After con	appletion of this course students will be able to	
CO1	Asses different image enhancement techniques and application	
CO2	Investigate different image segmentation algorithms	
CO3	Compose different image restoration techniques for application in real time problems	
CO4	Asses different colour models for enhancement, segmentation and restoration	
CO5	Investigate different lossless and lossy compression	
CO6	Design of real life problems and solution through image processing	

Nama of	the course	SOFTWARE PROJECT MANAGEMEN	т		
		Semester: 8 TH	1		
Duration	: 6 months	Maximum Marks: 100			
Teaching	Scheme	Examination Scheme			
Theory: 3	3 hrs./week	Mid Term I Exam: 15 N	Marks		
Credit Po	ints: 3	Mid Term II Exam: 15 I	Marks		
		Class performance & Attendance: 20 I	Marks		
		End Semester Exam: 75 Marks (to be mappe	ed into 5	0 marks)	
Objective	:				
1.	To understand the Software Project I	Planning and Evaluation techniques.			
2.	To plan and manage projects at each	stage of the software development life			
	cycle.				
3.	1	various phases involved in project manage	ment an	d people	
	management.				
4.	To deliver successful software project	cts that support organization 's strategic goals	S.		
Pre-Requ	iisite				
1.	Software Engineering – PEC(IT)602	A			
Module	Content		Hrs.	Marks	
1	SOFTWARE PROJECT		6		
	Concept of Project, Software pr	roject, Importance of Software Project			
	Management, Activities, Methodolo	ogies, Categorization of Software Projects,			
	Setting objectives, Project portfolio	Management, Risk evaluation, Strategic			
	program Management, Stepwise Program	ject Planning.			
2	PROJECT LIFE CYCLE AND EFFORT ESTIMATION 8				
	Software process and Process Models - Choice of Process models - Rapid				
	Application development, Agile methods - Dynamic System Development				
	Method, Basics of Software estimation – Effort and Cost estimation techniques				
	_	COCOMO II - a Parametric Productivity			
	Model.				

3	ACTIVITY PLANNING AND RISK MANAGEMENT	8	
	Objectives of Activity planning, Project schedules, Activities, Sequencing and		
	scheduling, Gantt chart, Network Planning models, Critical path method, PERT		
	technique, Resource Allocation, Cost schedules. Industrial strength software:		
	features & challenges.		
	Risk identification, Assessment, Risk Planning, Risk Management: Proactive &		
	Reactive risk management.		
4	PROJECT MANAGEMENT AND CONTROL	8	
	Framework for Management and control, Collection of data, Visualizing		
	progress, Cost monitoring, Earned Value Analysis,		
	Project tracking, change control, Contract Management. Software		
	Configuration Management- need, basic configuration, baseline of		
	configuration.		
	Concept of quality, quality attributes, iron triangle, TQM.	_	
5	STAFFING IN SOFTWARE PROJECTS	6	
	Managing people, Organizational behavior, Best methods of staff selection, The		
	Oldham – Hackman job characteristic model, Health and Safety, Ethical and		
	Professional concerns – Working in teams, Decision making, Organizational structures, Dispersed and Virtual teams, Leadership, role of project manager.		
Course	Outcomes:		
	mpletion of the course students will able to-		
CO1	Assess Project Management principles while developing software.		
CO2	Identify the basic project management concepts, framework and the process mode	els.	
CO3	Review about software process models and software effort estimation techniques.		
CO4	Estimate the risks involved in various project activities.		
CO5	Define the checkpoints, project reporting structure, project progress and track	king me	echanisms
	using project management principles.		
CO6	Determine staff selection process and the issues related to people management.		
Learnin	g Resources:		
1	Bob Hughes, Mike Cotterell and Rajib Mall: Software Project Management – TM	1H	
2	Robert K. Wysocki —Effective Software Project Management - Wiley		
3	Software Engineering: A Practitioner's Approach- Roger PressmanTMH		
4	Ingenieria del Software Ian SommervillePearson		
5	Walker Royce: —Software Project Management - Addison-Wesley		
6	Gopalaswamy Ramesh, —Managing Global Software Projects- McGraw Hill		
7	Software Engineering- Pankaj Jalote- Wiley India		

Name of the course	Social Network Analysis
Course Code: OEC(IT/CS)803C	Semester: 8 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 3 hrs./week	Two Mid Term Exam: 30 Marks

Credit Po	oints: 3 Assignme	ent & Quiz: 10 Marks		
	Term pap	er: 05 Marks		
	Presentat	ion on selected topics: 05 Marks	3	
	End Sem	ester Exam: 75 Marks (to be mapp	ed into 5	0 marks)
Objectiv	e:			
1.	To study the concept of online social network	in graph theoretic concept		
2.	To study centrality measures of online social n			
3.	To study social network content and analyze th			
4.	To study rumour detection in social media	c sentiment		
5.	·	ation in assist madis		
	To study influence maximization and minimiz	ation in social media		
Pre-Requ	·			
1.	Discrete mathematics BS(CS/IT)408			
2.	DBMS PC(CS/IT)512			
Module	Content		Hrs.	Marks
1	Introduction: A General Overview: online so		2	6
	network as graph, topology, Erdos Reyni co			
	degree separation, small world network, la	rge scale network, propagation		
2	approaches through social network graph	mant Nada daguna cantuality	6	15
2	Centrality measures: Graph centrality co Betweenness centrality, closeness centrality, p		0	13
	centrality, K-core	age rank centrality, Eigen vector		
3	Sentiment analysis: Sentiment: positive, negative, negat	ive and neutral. NLP for analysis	5	15
	of sentiment, machine learning approaches for			
4	Rumour detection: Detection of rumour in	· ·	5	15
	rumour detection, generating dictionary for ide			
	learning approaches to differentiate rumour c			
5	detection, identifying the profile generating run		6	1.5
3	Influence maximization: Introductory con influence maximization. Recent trends in influence	* **	6	15
6	Influence minimization: Introductory cond		4	12
Ü	influence minimization. Application of influ			12
	content in OSN			
7	Clustering and community detection: Comm	nunity detection in online social	4	10
	network, clustering, clustering coefficient, mod	lularity, transitivity, average path		
	length			
8	Application of SNA: Real world social networ	k issues and solution	4	12
	g Resources:			
1.	Analyzing Social Networks Using R; Stephen I	P. Borgatti et al, Sage publishing, 2	2022	
2.	Social Network Analysis with Applications, Ian	n McCulloh, Helen Armstrong, An	thony Jo	hnson,
~	Wiley, 2013			
	Outcomes:			
	npletion of this course students will be able to Assess proficiency and understanding of social	notycoules for business and professional	ional va	
CO1	Assess proficiency and understanding of social	networks for business and profess:	ionai use	7

CO2	Investigate different use of social network analysis and social network developer tools
CO3	Assess different centrality measures and community detection mechanisms for different
	applications
CO4	Compose different influence maximization/minimization problems
CO5	Investigate different content of social network and validate the sentiments and purposes
CO6	Design real life solution for online social network issues

Name of	the course	QUANTUM COMPUTING		
Course C	Code: OEC(IT/CS))803D	Semester: 8 th		
Duration: 6 months Maximum Marks: 100				
Teaching	eaching Scheme Examination Scheme			
Theory: 3	3 hrs./week	Mid Term I: 15 Marks		
Credit Po	ints: 3	Mid Term II: 15 Marks		
		Assignment, Test based on assignments, Surprise tests,		
		Quizzes, Presentations, Attendance etc.: 2	20 Mark	KS
		End Semester Exam:75 Marks (to be mapp	ed into 5	0 marks)
Objective	es:			
1.	To develop mathematical foundation	for application in Quantum Computing.		
2.	To introduce the fundamentals of	quantum computing and understand the ba	asic post	ulates of
	quantum mechanics.			
3.	To apply quantum algorithms for sol	ving various problems.		
Pre-Requ	nisites:			
1.	Mathematics I [BS(CS/IT)101], Physics [BS(CS/IT)]102			
2.	Design and Analysis of Algorithms [PC(CS/IT)406]			
Module	Content		Hrs.	Marks
1	Mathematical Preliminaries: Repr	esentation of states in linear vector space,	8	
	Basis and Dimensions, Inner Prod	uct, Orthonormality, Bra-Ket Formalism,		
	-	Normal and Projection Operators, Tensor		
	Product, Density Operator.			
2	_	nanics: Classical Deterministic Systems,	6	
	_	Systems, Basics of Quantum Theory,		
	Quantum Mechanics, Dirac Form	ule, Wave -Particle Duality, Postulates of nalism, Stern-Gerlach Experiment and		
		osition of States, Quantum Entanglement.		
3	Quantum Circuits: Bits and Qubits		8	
	1 -	ibits. Classical gates versus quantum gates,		
	single qubit gates, multiple qubit gate			
4	, -	tography: Comparison between classical	8	
	1 -	ell states. Quantum teleportation. Quantum		
	Cryptography, no cloning theorem.		_	
5	Quantum Algorithms: Introduc	1	8	
	parallelism, Deutsch's algorithm, De	eutsch's-Jozsa algorithm, Shor factorization		

	algorithm, Grover Search algorithm, Simon's algorithm, Quantum Fourier				
	Transform.				
Course C	Course Outcomes:				
After com	apletion of this course students will be able to-				
CO1	Understand Hilbert Space and Operators.				
CO2	Explain basic concepts of quantum mechanics as applied in Quantum computing.				
CO3	Develop quantum logic gate circuits.				
CO4	Differentiate the classical and quantum information processing concepts.				
CO5	Implementation of simple quantum algorithms using quantum parallelism.				
Learning	Learning Resources:				
1.	Quantum Computation and Quantum Information, Michael A. Nielsen and Isaac L. Chuang,				
	Cambridge University Press 2010.				
2.	Quantum computing explained, David McMahon, Wiley-interscience, John Wiley & Sons, Inc.				
	Publication 2008.				
3.	Quantum computing for computer scientists, Noson S. Yanofsky, Mirco A. Mannucci, Cambridge				
	University Press 2008				
4.	Introduction to Quantum Mechanics, 2nd Edition, David J. Griffiths, Prentice Hall New Jersey				
	1995.				
5.	Reskill Lecture notes http://www.theory.caltech.edu/~preskill/ph229/.Engineering Circuit				
	Analysis, W.H. Hyat, J.E. Kemmerly & S.M. Durbin, The Mc Graw Hill				
6.	Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II: Basic Tools				
	and Special Topics, Benenti G., Casati G. and Strini G, World Scientific.				

Name of	ame of the course: BIOINFORMATICS			
Course Code: OEC(IT/CS)803E Semester: 8 th				
Duration: 6 months Maximum Marks: 100				
Teaching	Teaching Scheme Examination Scheme			
Theory Co	ontact Hrs.: 3 hrs./week	Mid Semester-1 Exam: 15 Marks		
Credit Poi	t Point: 3 Mid Semester-2 Exam: 15 Marks			
		Assignment, Quiz & class attendance: 20 M	Marks	
	End Semester Exam: 75 Marks (to be mapped into 50 marks)		0 marks)	
Objective				
1.	To provide an introduction to what bioinformatics is and why it is important			
2.	To describe how bioinformatics data is stored and organized			
3.	To classify different types of Biological Databases			
4.	To learn how to extract sequence from a database			
5.	To describe the basics of theoretical protein structure prediction			
Pre-Requisite:				
1.	Programming for Problem Solving [ES(CS/IT)204]			
2.	High School Biology			
Module	Content		Hrs.	Marks

1.	Definition and Scope	05	
	Definition, Scope and importance of bioinformatics, Role of internet in		
	bioinformatics		
2.	Biological Data and Management	07	
	Characteristics of biological data-types and features, Data management-		
	organization of data, Analysis and Introduction of Biological Data Management		
	System		
3.	Biological Database	08	
	Relevance and scope of biological databases, Classification of Biological		
	database, DNA and proteins databases-NCBI, EBI, Uniprot, Omics in biology -		
	genomics, transcriptomics, proteomics and metabolomics		
4.	Sequence Analysis	09	
	Outline of sequence, Structure and functions of DNA and Proteins, Introduction		
	and Application to Sequence analysis, Sequence alignment- Introduction,		
	Types- Local, Global, Pairwise Alignment, Multiple Alignment	0.5	
5.	Structural Principles	07	
	Overview of macromolecular structures - DNA and proteins, Protein structure		
	database -CATH, SCOP, PDB, Basics of theoretical protein structure		
0 4	prediction		
	Outcomes:		
CO1	mpletion of this course the students will be able to - describe the scope and importance of Bioinformatics and role of internet in Bioin	formation	
		Tormatics	8
CO2	characterize and manage the different types of Biological data		
CO3	locate and extract data from key bioinformatics databases and resources		
CO4	apply the basics of sequence alignment and analysis		
CO5	describe the biological macromolecular structures and structure prediction method	ds	
Learning	g Resources:		
1.	Dr. Zhumar Ghosh, Bibekanand Mallick, Bioinformatics, Oxford University Press India, ISBN: 9780195692303		
2.	Orpita Bosu, Simminder Kaur Thukral, Bioinformatics - Databases, Tools,	and Alg	gorithms,
	Oxford University Press India, ISBN: 9780195676839		
3.	S.C. Rastogi, Namita Mendiratta, Parag Rastogi, Bioinformatics - Con	cepts, S	Skills &
	Applications, CBS Publishers & Distributors, ISBN: 9788123914824		
4.	Prakash S. Lohar, Bioinformatics, Mjp Publishers, ISBN: 9788180940668		
5.	Jin Xiong, Essential Bioinformatics, Cambridge, ISBN: 9780521706100		
6.	D. W. Mount, Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor Laboratory		boratory
	Press, ISBN: 978-0879697129		-

Name of the course	Project 3
Course Code: PROJ(IT)803	Semester: 8 th
Duration: 6 months	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Project Work: 16 hours/week	Internal Evaluation: 80 Marks
Credit Points: 8	End Semester (External) Exam: 20 Marks

Objecti	Objective:		
1.	Design the solution with suitable techniques, resources and modern tools revealing reliability and		
	ethical behaviour in industrial practice.		
2.	To apply the concept related to mathematics and Information Technology		
3.	To demonstrate the techniques those have been used to implement the idea.		
4.	Discuss the experimental results		
Pre-Re	quisite		
(As req	uired)		
Learnii	ng Resources:		
(As req	(As required)		
Course	Outcomes:		
After completion of this Project 3 the students will be able to -			
CO1	Design the solution with appropriate techniques, resources and contemporary tools exhibiting		
	integrity and ethical behavior in engineering practice.		
CO2	Manage project schedule, resources, and work assignments to ensure timely completion.		
CO3	Perform professionally as a team member, accepting responsibility, taking initiative, and providing		
	leadership necessary to ensure Project success.		
CO4	Perform formal and informal Communication with team members to prepare presentation and		
	technical documentation (report).		
CO5	Defend the performance of the implemented project and the implication of the solution.		