
NEED FOR DDBMS

➢ A centralized database management system (DBMS) is a complex software program that
allows an enterprise to control its data on a single machine.

➢ In centralized DBMS operational data of an enterprise are integrated and hence we have
centralized controlled access to the data.

➢ The computer network technology goes against all types of centralization efforts. So the
focus will be on integration rather than centralization.

2

Centralized DB systems

P

M ...

• Simplifications:
▪ single front end

▪ one place to keep data, locks

▪ if processor fails, system fails, ...

Moving over to DDBMS

• Distributed Nature of Organizational Units: Most organizations in current times are
subdivided into multiple units that are physically distributed over the globe. Each unit requires its
own set of local data. Thus, the overall database of the organization becomes distributed.

• Need for Sharing of Data: Multiple organizational units often need to communicate with each
other and share their data and resources. It demands common databases or replicated databases
that should be used in a synchronized manner.

• Support for Both OLTP and OLAP: Online Transaction Processing (OLTP) and Online Analytical
Processing (OLAP) work upon diversified systems which may have common data. Distributed
database systems aid both these processing by providing synchronized data.

• Database Recovery: Replication of data automatically helps in data recovery. Users can access
data from other sites while the damaged site is being reconstructed. Thus, database failure may
become almost inconspicuous to users.

• Support for Multiple Application Software: Most organizations use a variety of application
software each with its specific database support. DDBMS provides a uniform functionality for using
the same data among different platforms.

4

Case Study: Distributed Database
• Example: IBM has offices in London, New York, and Hong Kong.
• Employee data:

• EMP(ENO, NAME, TITLE, SALARY, …)

• Where should the employee data table reside?
• Mostly, employee data is managed at the office where the employee works

• Periodically, IBM needs consolidated access to employee data
• E.g., IBM changes benefit plans and that affects all employees.

5

London
Emp

Internet

London
Payroll app

London

New York
Payroll app

New York

Hong Kong
Payroll app

Hong Kong

HK
Emp

NY
Emp

Much better!!

Distribution provides
opportunities for
parallel execution

6

Internet

London
Payroll app

Annual
Bonus app

London

New York
Payroll app

New York

Hong Kong
Payroll app

Hong Kong

London
Emp NY

Emp

HK
Emp

7

Internet

London
Payroll app

Annual
Bonus app

London

New York
Payroll app

New York

Hong Kong
Payroll app

Hong Kong

Lon, NY
Emp NY, HK

Emp

HK, Lon
Emp

Replication improves
availability

Idea of Distributed Database (DDB) System
The database is not stored at a single location. Rather, it may be stored in
multiple computers at the same place or geographically spread far away. Despite
all this, the distributed database appears as a single database to the user
So, DDB is, logically interrelated collection of shared data, physically distributed
over a computer network and data need to be structured.

As seen in the figure, the components of
the distributed database can be in
multiple locations such as India, Canada,
Australia, etc. However, this is
transparent to the user i.e the database
appears as a single entity.

Idea of Distributed Database (DDB) System contd..

A DDB is a collection of data which belong logically to the same system, but are spread over
the sites of a computer network. Here two important points are
1. Distribution – implies the whole data not residing at the same site
2. Logical correlation- data have some properties which tie them together

What is not Considered as Distributed Database (DDB) System contd..

• The data of different branches are distributed
on three backend computers, which perform
database management functions.

• The application programs are executed by a
different computer, which requests database
access services from the backend when
necessary.

• Here data distribution is not relevant from the
application viewpoint and existence of local
application is missing

• DDBMS in a Nutshell

➢DDBMS is a set of multiple interconnected databases that is
distributed over the computer network or internet.

➢DDBMS manages these distributed databases and provides
mechanisms so as to make these databases transparent to the
users i.e it appears as one single database to users.

➢In these systems, data is intentionally distributed among
multiple nodes so that all computing resources of the
organization can be optimally used.

➢Data in each site can be managed by a DBMS independent of
the other sites.

➢The processors in the sites are connected via a network.

➢DDBMS is not a loosely connected file system.

MAIN OPERATIONS OF DDBMS

➢It is used to create, retrieve, update and delete distributed
databases.

➢It synchronizes the database periodically and ensures that the
distribution becomes transparent to the users.

➢It ensures that the data modified at any site is universally
updated.

➢It is used in application areas where large volumes of data are
processed and accessed by numerous users simultaneously.

➢It is designed for heterogeneous database platforms.

➢It maintains confidentiality and data integrity of the databases.

Overview of DDB
• Distributed DBMS (DDBMS): Software system that permits the management

of the distributed database and makes the distribution transparent to users

• DDBMS Governs storage and processing of logically related data over
interconnected computer systems in which both data and processing
functions are distributed among several sites. So DDBS -> DDB + D-DBMS

• Sharing of data can be achieved by developing a distributed database system
which makes the data accessible by all sites and stores the data close to the
site where it is most frequently used.

• Distributed databases utilize multiple nodes. More nodes in the system
provide more computing power, offer greater availability, and resolve the
single point of failure issue.

• DDBMS ensures that updates in one database automatically reflected on
other databases (as applicable) in different sites.

POSSIBLE CASE OF DDBMS
➢ IBM’s DB2 running on IBM mainframe server, contains information about payroll and human resources.
➢Oracle’s DBMS maintains project information and Microsoft’s SQL Server keeps track of production information.
• If we need to combine the information stored in different types of DBMS, we can adopt two approaches-.
• In manual approach, we would fetch data through queries form each individual server DB and then transfer

results from each DB to the personal workstation to merge them.
• For automated approach, the company needs to combine all the three Centralized DBs into a new, single,

distributed DB that needs to be implemented. Here the users will have the illusion that all the combined data
content is stored and controlled locally by one system. The DDBEs query processor handles all the necessary
coordination, execution, and merging automatically.

Distributed Database - User View

Distributed Database

Distributed DBMS - Reality

Communication
Subsystem

User
Query

DBMS
Software

DBMS
Software

User
Application

DBMS
Software

User
ApplicationUser

Query
DBMS

Software

User
Query

DBMS
Software

Distributed DBMS - Reality

Distributed Database Systems
➢Multiple processors (+ memories)

➢Heterogeneity and autonomy of “components”

➢A distributed database system consists of loosely coupled sites that share no

physical component

➢Database systems that run on each site are independent of each other

➢Transactions may access data at one or more sites

Distributed Data Processing
➢Number of autonomous processing elements/logic (may not be homogeneous)

interconnected by a computer network cooperates to perform the assigned task.
➢Data used by a number of applications may be distributed over number of sites.
➢The control of the execution of various tasks might be distributed instead of

being performed by one computer system.
➢Distributed processing better corresponds to the organizational structure and

such a system is more reliable and more responsive. This distribution actually
copes up with the large-scale data management problems

Characteristics of Distributed Database Management Systems

➢Collection of logically-related shared data

➢Data split into fragments

➢Fragments may be replicated

➢Fragments/replicas allocated to sites

➢Sites linked by a communications network

➢Data at each site is under control of a DBMS

➢DBMSs handle local applications autonomously

➢Each DBMS participates in at least one global application

PARALLEL PROCESSING SYSTEMS

PARALLEL DATABASES

Database systems that run over multiprocessor systems are called as parallel
database systems and they are of three main types-
1. Shared memory (tightly coupled) architecture-Multiple processors share
secondary (disk) storage and also share primary memory.

PARALLEL DATABASE contd..
2. Shared disk (loosely coupled) architecture- Multiple processors share
secondary (disk) storage but each has their own primary memory.

PARALLEL DATABSE contd..
3. shared nothing architecture- every processor has its own primary and
secondary (disk) memory, no common memory exists, and the processors
communicate over a high-speed interconnection network (bus or switch)

Parallel v/s Distributed Database
• PARALLEL DATABASE- A multiprocessor system is symmetrical, consisting of

number of identical processors and memory components, and controlled by
one or more copies of the same operating system. In shared nothing
multiprocessor systems, there is symmetry and homogeneity in the nodes.

• DISTRIBUTED DATABASE- For distributed systems, heterogeneity in both
operating system as well as hardware is quite common.

Distributed Database Features
• Location independency - Data is physically stored at multiple sites and

managed by an independent DDBMS.

• Distributed query processing - Distributed databases answer queries in a

distributed environment that manages data at multiple sites.

• Distributed transaction management - Provides a consistent distributed

database through commit protocols, distributed concurrency control

techniques, and distributed recovery mechanisms.

• Seamless integration - Collection of interconnected databases residing at

different sites basically represents a single logical database.

• Network linking - All databases in a collection are linked by a network and

communicate with each other.

Functions of Distributed Database

1. Application Interfaces- This is used to interact with the end users and remote
databases.

2. Distribution Transparency- User should be unaware about the distributed
nature of the system and a strong trade off between distribution transparency
and performance.

3. Mapping Techniques- DDBMS must provide mapping techniques to determine
the data location of local and remote fragments.

4. Management of Replicated Data- DDBMS must have the ability to decide
which copy of a replicated data item to be selected while executing a data
request.

5. Extended Query Processing & Optimization- DDBMS provides query
optimization for both local & global queries to find the best access strategy.

Functions of Distributed Database contd ..

6. Distributed Transaction Management- Consistency of data should not be

violated by local and distributed transactions.

7. Distributed Backup & Recovery Services- These services ensures availability

and reliability of a database in case of failures.

8. Support for Global System Catalog- DDBMS must contain a global system

catalog to store data distribution details for the system.

9. Support for Global Database Administrator- This is responsible for

maintaining the overall control of data and programms in DDBMS.

10. Distributed Security Control- This feature is used to maintain appropriate

authorization/access privileges to the distributed data.

DATE’S 12 OBJECTIVE RULES FOR DDBMS

1. Local Autonomy- Operations at a particular site should be managed by that
particular site and no site should depend on some other site.

2. Non-Reliance on a Central Cite- No site relies on a central cite, i.e there
should be no one site without which the system cannot operate.

3. Continuous operations – Ideally, there should never be a requirement for a
planned system shutdown due to various database related operations.

4. Location Independence- users are unaware about the physical storage of
the data and they can access the data from all sites.

5. Fragmentation Independence- Users are unaware of data fragmentation
and will be able to access all data no matter how it is fragmented.

6. Replication Independence- Users are unaware that the data item is
replicated and neither they can access a particular data item copy nor they
can modify all data copies.

DATE’S 12 OBJECTIVE RULES FOR DDBMS contd..

7. Distributed Query Processing- Distributed queries can reference data form
more than one site and query optimization is performed transparently.

8. Distributed Transaction Processing- both local and global transactions must
ensure ACID properties.

9. Hardware Independence- DDBMS should run on a Varity of H/w platforms.

10. Operating System Independence- DDBMS should run on a Varity of
operating systems.

11. Network Independence- It is possible the DDBMS run on a Varity of
communication networks.

12. Database Impendence- DDBMS can be made up of different local DBMS set
ups, i.e supporting different underlying data models.

Types of Distributed Databases

HOMGENEOUS DISTRIBUTED DATABASE

➢In an ideal scenario all sites will share a common global schema, (although some

relations may be stored only at some local sites) and run the same DBMS software.

➢ Sites are aware each other sites and they cooperates in processing the user requests.

➢Mostly same identical operating systems even if the processors are not same.

➢ Each site surrenders autonomy in terms of right to change the schema or software

➢Appears to the user as a single system and the database is accessed through a single

interface.

➢ Homogeneous DDBMS provides several advantages such as-

• Simplicity,

• ease of designing and management

• incremental growth.

These systems improve performance by exploiting parallel processing capabilities of

multiple homogenous nodes.

HOMGENEOUS DISTRIBUTED DATABASE

Types of Homogeneous Distributed Database

• There are two types of homogeneous distributed database −

• Autonomous − Each database is independent that functions on its
own. They are integrated by a controlling application and use message
passing to share data updates.

• Non-autonomous − Data is distributed across the homogeneous
nodes and a central or master DBMS co-ordinates data updates across
the sites.

HETEROGENEOUS DISTRIBUTED DATABASE

➢Sites may run different operating systems and DBMS that need not be
following same underlying data model (i.e relational, hierarchical, object
oriented).

➢Sites having their own local databases and hence different schemas and
products.

➢Each site is completely unaware of other sites and hence limited
cooperation among those sites in processing user requests.

➢To allow communication among the different sites interoperability
between different DBMS products i.e translations are required.

• Heterogeneity may occur at different levels-

1. Different Hardware- If the hardware is different but the DBMS software is
same then translation is straightforward.

2. Different DBMS Software- Here the execution of global trnsactions are very
complicated as it involves mapping of one data structures in one model to the
equivalent data structures in another model. The translation of query
language is also essential.

3. Different Hardware and different software- It is extremely complex as
translation of both hardware and DBMS software are required.

The provision of a common conceptual schema which is formed by integrating
individual local conceptual schemas, adds extra complexity to the distributed
processing.

To address such heterogeneity, gateways are used in some relational systems
which basically works as a query translator, but it may not support transaction
management and homogenizing the structural and representational differences
between different DBMSs.

Types of Heterogeneous Distributed Databases

•Federated − The heterogeneous database systems are
independent in nature and integrated together so that
they function as a single database system.

•Un-federated − The database systems employ a central
coordinating module through which the databases are
accessed.

FEDERATED DATABASE SYSTEM (FDS)
➢Several decentralized autonomous databases appear to function as a single

entity and FDS transparently integrates multiple autonomous database
systems into a single federated database.

➢A federated database, or virtual database, is the fully integrated, logical
composite of all constituent databases in a federated database system

➢FDS must be able to decompose the query into subqueries for submission to
the relevant constituent DBMS's, after which the system must composite the
result sets of the subqueries.

➢ Because various DBMS employ different query languages, so FDS can apply
wrappers to the subqueries to translate them into the appropriate query
languages

➢The goal of the system is to ensure that a typical query will need to use only
one component, thus drastically reducing the number of rows that need to be
searched

DDBMS DESIGN ISSUES
➢These are applications where data and its accesses are inherently distributed in

different sites to increase the availability during failures.

➢ The methodology for designing DDBMS is same as that of centralized database.
However, some additional factors are considered here such as-

A. Data Replication- If relation r is replicated, a copy of relation r is stored in two
or more sites. This concept having a number of advantages and disadvantages

(i) Availability- If one of the site containing relation r fails, then relation r can be
found in other sites and the system can continue to process queries involving r.

(ii) Higher parallelism- For read operation on relation r, several sites can process
queries involving r in parallel and hence less data movement between sites.

(iii) Increased overhead on update- The system must ensure that all replicas are
consistent. Thus, whenever r is updated, the update must be propagated to all
the sites containing its replicas of r.

DDBMS DESIGN ISSUES (contd..)

B. Data Fragmentation- Database may be broken up into logical units called fragments
which will be stored at different sites. Three Types of Data Fragmentations are:

• Horizontal fragmentation: It divides a table 'horizontally' by selecting the relevant
rows and these fragments can be assigned to different sites.

• Vertical fragmentation: A vertical fragment of a table keeps only certain attributes of
it. It divides a table vertically by columns and these fragments are stored in different
sites. It is necessary to include the primary key of the table in each vertical fragment so
that the full table can be constructed if needed.

• Hybrid fragmentation: It comprises the combination of both Horizontal and Vertical
Fragmentation. Each fragment can be specified by a SELECT-PROJECT combination of
operations. In this case the original table can be reconstructed be applying union and
natural join operations in the appropriate order.

DDBMS DESIGN ISSUES (contd..)
C. Data Transparency
The user of a distributed database system should not be required to know either
where the data are physically located or how the data can be accessed at the
specific local site. This is called data transparency and it can take several forms:

Fragmentation transparency- Users are unaware about how a relation is
fragmented.

Replication transparency- Users do not have to be concerned with what data
objects have been replicated, or where the replicas have been placed.

Location transparency- Users are not required to know the physical location of
the data. The distributed database system should be able to find any data as long
as the data identifier is supplied by the user transaction.

FDS ARCHITECTURE

The five level schema architecture-

➢ Local Schema is the conceptual concept expressed
in primary data model of component DBMS.

➢ Component Schema is derived by translating local
schema into a model called the canonical/common
data model.

➢ Export Schema is a subset of component schema
(contain access control information) and it helps in
managing the flow of control of data.

➢ Federated Schema is an integration of multiple
export schema and it includes information on data
distribution generated when integrating export
schemas.

➢ External Schema defines a schema for a
user/applications or a class of users/applications.

ADVANTAGES OF DISTRIBUTED DATABASE

1. Sharing of Information- User at one site accesses data residing at other sites.

2. Faster Data Accessing- If end user requested data available locally, then faster data

accessing as compare to the remotely located centralized system. Also it is possible

to split a query into a number of sub queries that can be executed in parallel at

different sites.

3. Increased Availability & Reliability- If a transaction accessing data item form a

failed site, then it can find it form other sites due to data replication and hence non

termination of the transaction.

4. Processor Independence- Since users can access any available copy of the data

item, so user request do not depend on a specific processor.

5. Modular Extensivity- new sites can be added to the network without affecting the

operations of other sites. Such flexibility allows organizations to extend their

system in a relatively rapid and easier way.

PROMISES OF DDBMS
1. Transparency Management for Distributed and Replicated Data

➢Transparent system “hides” the implementation details from the end user and this concept
helps in building the complex applications.

➢Storing each partition of a relation at different sites is known as fragmentation.

➢Furthermore, it may be preferable to duplicate some of these fragmented data items at
different sites for performance and reliability reasons.

➢Fully transparent access means that the user can still pose the query, without paying any
attention to the fragmentation, location or replication of the data.

1. EMP(ENO, ENAME, TITLE)
2. PROJ(PNO, PNAME, BUDGET)
3. SAL(TITLE, AMT)
4. ASG(ENO, PNO, RESP, DUR)
Query:
SELECT ENAME, AMT
FROM EMP, ASG, SAL
WHERE ASG.DUR > 12
AND EMP.ENO = ASG.ENO
AND SAL.TITLE = EMP.TITLE

Different Forms of Transparencies

Data Independence- implies immunity to the user applications such that
any changes in data definition and organization will be having no impact to
the end user level.

Logical data independence –refers immunity to the user applications
related to changes in the logical structure (i.e., schema) of the database.

Physical data independence- deals with hiding the details of the storage
structure from user applications.

User applications should not be concerned with the details of physical data
organization. Therefore, the user application should not need to be
modified when the data organization changes.

Network Transparency
User should be protected from operational details of the network.
There will be no difference between database applications run on centralized
database and distributed database.
Network transparency categorization from the viewpoint of-
1. Network services provided- uniform means by which services are accessed.
2. Distribution Transparency (DBMS perspectives) - requires that users do not

have to specify where the data is located.
Sometimes two types of distribution transparencies are identified:
A. Location transparency- command used to perform the task is independent

of both the location of the data and the system on which the operation is
being carried out.

B. Naming transparency- unique name is provided for each object in the
database. In the absence of naming transparency, users are required to
embed the location name (or an identifier) as part of the object name.

Replication Transparency

➢For performance, reliability, and availability, it is usually desirable to

distribute the data in a replicated fashion across the network.

➢Replication transparency refers only the existence of replicas, not to their

actual locations.

➢Distributing these replicas across the network in a transparent manner is

the domain of network transparency.

Fragmentation Transparency

➢Relations are divided into smaller fragments and each fragment is

treated as a separate object (i.e., another relation) for performance,

availability and reliability.

➢In fragmentation we have to deal with the problem of handling user

queries that are specified on entire relation. Typically, this requires a

translation from a global query to several fragmental queries.

➢Fragmentation transparency is mainly related to query processing.

DIFFERENT LAYERS OF TRANSPARENCY
The level of transparency is inevitably a compromise between the ease of use and the
difficulty and overhead cost of providing high levels of transparency.
Language Transparency (API level)– requested service in the user language is converted to the
required operations which is to be taken care of by the compiler or interpreter. This layer
provides high level data access to the user. Here no transparent service is provided to the
implementer of compiler or interpreter.
➢In the second layer management of network resources is taken over by the distributed

operating system or the middleware.
➢The third layer at which transparency can be supported is within the DBMS. It is the

responsibility of the DBMS to make all the necessary translations from the operating system
to the higher-level user interface.

2. RELIABILITY THROUGH DISTRIBUTED TRNSACTIONS

➢Distributed DBMSs are intended to improve reliability since they have
replicated components and, thereby eliminating the single point of
failure.

➢Distributed transactions are executed at a number of sites which
actually accesses the local database.

➢user applications do not need to be concerned with coordinating
their accesses to individual local databases nor do they need to worry
about the possibility of site or communication link failures during the
execution of their transactions.

3. Improved Performance

Improved performance for distributed DBMSs is based on two points.
1. Data localization- Data to be stored in close proximity to its points of use. This
has two potential advantages:
(i) Since each site handles only a portion of the database, so contention for CPU

and I/O services is not as severe as for centralized databases.
(ii) Localization reduces remote access delays that are usually involved in wide

area networks
2. Inherent parallelism of distributed systems-
(i) Inter-query parallelism- ability to execute multiple queries at the same time.
(ii) intra-query parallelism- breaking up a single query into a number of
subqueries each of which is executed at a different site, accessing a different part
of the distributed database.

4. Easier System Expansion

➢In a distributed environment, it is much easier to accommodate increasing
database sizes.

➢expansion can usually be handled by adding processing and storage power to
the network.

➢One aspect of easier system expansion is economics. It normally costs much
less to put together a system of “smaller” computers with the equivalent power
of a single big machine.

COMPLICATIONS ASSOCIATED WITH DDBMS

1. Need for Complex and expensive software: DDBMS often demands complex
and more expensive software for data transparency and also co-ordination
across several sites.

2. Processing overhead: Even simple operations may require a large number of
communications and additional calculations to provide uniformity in data
across the sites.

3. Data integrity: The need for updating the duplicated data in multiple sites
mainly poses problems. In this context, DDBMS is responsible for-

(i) choosing one of the stored copies of the data for access in case of retrievals
(ii) making sure that the update is reflected on every copy of the data item.

4. Dealing with Site Failure: If some site fails or some communication link fails
while an update is going on, the system must make sure that the updated effects
will be reflected on the concerned data item residing at the failing site as soon as
the system recovers from the failure.

COMPLICATIONS ASSOCIATED WITH DDBMS (contd..)

5. Maintaining Synchronization Among Sites: Since each site cannot have
instantaneous information on the actions currently being carried out at the
other sites, so maintaining synchronization among different sites are
considerably harder than the centralized system.

6. Security concerns: Since data exchange occurs among different sites so
maintaining proper security of the exchanged data is a big challenge apart from
secure communication channel problem.

7. Overheads associated with improper data distribution: Responsiveness of
queries largely dependent upon proper data distribution. Improper data
distribution often leads to very slow response to user requests.

Distributed DBMS Architecture
Architecture of a system deals with
1. Components of the system
2. Functions of the system
3. Interaction between all components
DDBMS architectures are generally
developed depending upon three
parameters:
1. Distribution: It states the physical
distribution of data across the different sites.
2. Autonomy: It indicates the distribution of
control of the database system and the
degree to which each constituent DBMS can
operate independently.
3. Heterogeneity: It refers to the uniformity
or dissimilarity of the data models, system
components and databases.

Client Server Architecture
• It has a number of clients and a few

servers connected via a network

• A client sends a query to one of the
servers. The earliest available server
solves it and replies.

• It is simple to implement and execute due
to centralized server systems.

Client-Server Architecture with Client and Server Roles

• This is a two-level architecture where the functionality is mainly divided into
servers and clients. This two level concept basically promotes easier
management of complex DBMS systems and also the complexity of data
distributions.

• The primary server functions are mainly ---

data management, query processing,

query optimization and transaction management.

• Client functions mainly include user interface. However,

they also performs consistency checking of user queries

and at times the transaction management.

• The two different types of client - server architectures

• Single Server-Multiple Client (centralized systems)

• Multiple Server-Multiple Client

Types of Client server Architecture
• Using DDBMS primitives – client local DDBMS component routes the query to

to server which accesses the DB and sends back the results.

• High distribution transparency (as file names are global) and works like a
centralized system

• Low efficiency as answer travels one tuple at a time.

Types of Client server Architecture contd..
• Using auxiliary programs & RPC –Remote database can also be accessed by an

via an auxiliary program. This prog. is written by an application programmer
which returns the results to the requesting application.

• The applications asks the auxiliary program to excute on the server and to send
back the result.

• The auxiliary prog. assembles tuples into result sets improving transmission
efficiency.

Client-Server Architecture contd ..
• Single server multiple client scenario

Client-Server Architecture contd
Multiple Server-Multiple Client scenario- two alternative management strategies-

1. each client manages its own connection to the appropriate server

OR

2. each client knows only its “home server” which then communicates with other
servers as required.

• The first approach loads the client machine with additional responsibilities and
this is known as “heavy client” system.

• The second approach leaves the data management functionality for the servers.
Thus, transparency of data access is promoted and this is mainly “light clients.”

Client-Server Architecture contd..
• Heavy client systems

Client-Server Architecture contd..
• The application server approach

(indeed, a n-tier distributed
approach) can be extended by the
introduction of multiple database
servers and multiple application
servers

• each application server is
dedicated to one or a few
applications, while database
servers operate in the multiple
server fashion

Collaborating Server Architecture
• This architecture is designed to run a single query on multiple servers.

• Specific server breaks the single query into multiple quires and the results are
combined and sent back to the client.

• This architecture has a collection of database servers. Each server is capable
of executing the current transactions across the database.

Middleware Architecture
• This is designed in such a way that single query is executed on multiple servers.

• This architecture uses local servers to handle local queries and transactions.

• The middleware software are used for execution of queries & transactions
across one or more independent database servers.

Peer-to-Peer Systems
• No specific client or server.
• Each peer acts both as a client and server

depending on whether the node is requesting
or providing service.

• Each node considered as peer.
• These peers share their resource with other

peers and co-ordinate their activities.
• Pattern of communication between the pairs

entirely depends on the application.
• Each object is replicated in several

systems/sites to distribute the load and manage
failure of sites

• Data allocation & retrieval is more complex
than client-server systems

Peer-to-Peer Systems contd..
• This architecture generally has four

levels of schemas:

• External Schema: Depicts user view of
data.

• Global Conceptual Schema: Depicts
the global logical view of data.

• Local Conceptual Schema: Depicts
logical data organization at each site.

• Local Internal Schema: Depicts
physical data organization at each site.

General Reference Architecture of DDBMS

Schema Architecture for peer to peer systems
• Global schema- defines data as a whole, not fragmented at all.

• Employee (e_no, e_name, dept_no)

• Fragmentation Schema- Specifying the way global relations are fragmented

• Emplyee1 -> dept_no=‘production’ and dept_no=Emplyee2 -> ‘sales’

• Allocation schema – determining the sites where a particular fragment is
allocated, for ex:- Emplyee1 -> at site 1,2 and Emplyee2 -> at site 3,4

• Local mapping schema – helps in identifying the global relation schema for any
local database relation schema. It is the local mapping schema which facilitates
the integration of local database sites into one single global database. It is very
much similar to the 3 schema architecture of centralized database.

DISTRIBUTED ACCESS PLAN

• Global query:
SELECT * FROM PART
WHERE SUP# = S1
OR
SELECT * FROM PART, SUPPLIER
WHERE SUP# = S1 AND SUPPLIER.SUP# = PART.SUP#

DISTRIBUTED ACCESS PLAN contd..

• Example:
• Let us assume that, the database is distributed over three sites-
• The supplier file is located at site1(central administration), while the part file is splited into

two different subfiles located at site 2 and 3.

DISTRIBUTED ACCESS PLAN

➢Distributed access plan can be written by the programmer or produced
automatically by the optimizer.

➢Global Optimization:- It determines which data files must be transmitted
between sites. The main optimization parameter here is the communication cost,
although the cost of accessing the local databases should also be taken into
account in some cases. The relative importance of these factors depends on the
ratio between communication costs and disk access costs.

➢Local optimization:- it decides how to perform the local database access at each
site; the problems of local optimization implied for traditional non-distributed
databases.

Peer-to-Peer Systems contd..
• Physical data organization at each site may be different. Hence each site needs

an individual internal schema definition called as local internal schema (LIS).

• The enterprise view of the data is described by global conceptual schema
(GCS) and it describes the logical structure of the data at all sites.

• To handle data fragmentation and replication, the logical organization of data
at each site needs to be described and therefore, a third layer in the
architecture is added known as local conceptual schema (LCS). The global
conceptual schema is the union of the local conceptual schemas.

• Finally, user applications and user access to the database is supported by
external schemas (ESs), defined as being above the global conceptual schema.

• distributed DBMS translates global queries into a group of local queries, which
are executed by distributed DBMS components at different sites that
communicate with one another

SOFTWARE COMPONENT OF DDBs

1. The database management component (DB)
2. The data communication component (DC)
3. The data dictionary (DD), which is extended to represent information about

the distribution of data in the network
4. The distributed database component (DDB)

Components of a Distributed DBMS

User Processor- handles interactions with user.
1. user interface handler- interprets the user
commands and also formats the result data sent back
to the user.
2. semantic data controller- checks the integrity
constraints and authorizations that are defined in
global conceptual schema.
3. global query optimizer and decomposer-
determines an execution strategy to minimize the
cost and translates the global queries into local ones.
4. Global execution monitor- coordinates distributed
execution of user request. This part is also called as
distributed transaction manager. Execution monitors
at various sites usually communicate with each other
while executing queries.

Components of a Distributed DBMS contd..
• Data processor – deals with data storage and having the following parts-

1. local query processor- responsible for choosing the best access path to access
any data item. The term access path refers to the data structures and algorithms
used to access the data. A typical access path, for example, is an index on one or
more attributes of a relation

2. Local recovery manager- responsible for making sure that the local database
remains consistent even when failures occurs

3. run-time support processor- physically accesses the database according to
the physical commands generated by the query optimizer.

• The run-time support processor is the interface to the operating system

• It contains the database buffer (or cache) manager, which is responsible for
maintaining the main memory buffers and managing the data accesses.

N.B- In peer-to-peer systems, both the user processor modules and the data
processor modules should be present in each machine

Multi - DBMS Architectures
• Multidata base systems (MDBS)- individual

DBMSs (whether distributed or not) are fully
autonomous and having no cooperation with
each other. They may not even “know” of
each other’s existence or how to talk to each
other.

➢In case of logically integrated distributed
DBMS, GCS is the conceptual view of entire
database, while in distributed MDBMS, it is
the collection of some of the local DBMSs
that are sharable.

➢So, global database in logically integrated
DDBMS is actually equal to the union of local
databases, whereas in multi-DDBMS it is only
a subset of the same union.

➢Hence GCS in multi-DDBMSs is the mapping
from local conceptual schemas to a global
schema, however for logically integrated
DDBMS the mapping is in the reverse
direction

Multi - DBMS Architectures contd..
This is an integrated database system formed by a collection of two or more
autonomous database systems and are expressed through six levels of schemas:

1. Multi-database View Level: Depicts multiple user views comprising of subsets of
the integrated distributed database.

2. Multi-database Conceptual Level: Depicts integrated multi-database that
comprises of global logical multi-database structure definitions.

3. Multi-database Internal Level: Depicts the data distribution across different sites
and multi-database to local data mapping.

4. Local database View Level: Depicts public view of local data.

5. Local database Conceptual Level: Depicts local data organization at each site.

6. Local database Internal Level: Depicts physical data organization at each site.

Multi - DBMS Architectures contd..
There are two design alternatives for multi-DBMS:
1. Model with multi-database conceptual level.
2. Model without multi-database conceptual level.

RELATION EMP [
KEY = {ENO}
ATTRIBUTES = {

ENO : CHARACTER(9)

ENAME : CHARACTER(15)
TITLE : CHARACTER(10)

}

]
RELATION PAY [

KEY = {TITLE}
ATTRIBUTES = {

TITLE : CHARACTER(10)

SAL : NUMERIC(6)

}

]

Conceptual Schema Definition

RELATION EMP [

KEY = {ENO}

ATTRIBUTES = {
ENO : CHARACTER(9)

ENAME : CHARACTER(15)

TITLE : CHARACTER(10)

}

]

INTERNAL_REL EMPL [

INDEX ON E# CALL EMINX

FIELD = {
HEADER : BYTE(1)

E# : BYTE(9)

ENAME : BYTE(15)

TIT : BYTE(10)

}

]

Internal Schema Definition

Create a BUDGET view from the PROJ relation

CREATE VIEW BUDGET(PNAME, BUD)

AS SELECT PNAME, BUDGET

FROM PROJ

External View Definition – Example 1

Mediator Architecture for MDBMS
• MDBS provides a layer of software that runs on top of

these individual DBMSs (mediator) and provides users
the facilities of accessing various databases.

• The multi-DBMS layer may run on multiple sites or
there may be central site where those services are
offered.

• Mediator level implements the GCS for handling user
queries. Mediators typically operate using a common
data model and interface language.

• To deal with potential heterogeneities, wrappers are
implemented whose task is to provide a mapping
between a source DBMSs view and the mediators’
view. For example, if source DBMS is relational, but the
mediator implementations are object-oriented, the
required mappings are established by the wrappers.

Data Fragmentation, Replication & Distribution Issues

• Two basic alternatives for placing the data: partitioned (or non-replicated) and
replicated.

• In partitioned scheme the database is divided into a number of disjoint
partitions each of which is placed at a different site.

• Replicated designs can be either fully replicated (also called fully duplicated)
where the entire database is stored at each site, or partially replicated (or
partially duplicated) where each partition of the database is stored at more
than one site, but not at all the sites.

Distributed Directory Management

A directory contains information (such as descriptions and locations) about data
items in the database. A directory may be global to the entire DDBMS or local to
each site; it can be centralized at one site or distributed over several sites; i.e
there can be a single copy or multiple copies.

Directory Concept in DDBMS
The distributed database schema information is needed during distributed query
optimization. The schema information is stored as meta data in a data
dictionary/directory, In the case of DDBMS, the schema definition is done both
at the global level (i.e. GCS) and at the local sites (i.e. LCS). Hence, there are two
types of directories:

(i) a global directory/dictionary (GD) that describes the database schema for
the end users and it permits mapping between external schemas and GCS.

(ii) the local directory/dictionary (LD), that describes the local mappings from
GCS and also the local schema at each site.

As the directory is itself a database containing metadata about the actual data,
so DDB design concept also applies to the directory management.

➢ Hence, a directory may be either global or local to each site. In other words,
there might be a single directory containing information about all the
database, or a number of directories, each containing information stored at a
particular site.

Directory Concept in DDBMS
• In case of global directory, it may be maintained centrally at one site, or by

distributing it over a number of sites.

• Keeping the directory at one site might increase the load at that site i.e
bottleneck.

• Distributing it over a number of sites, on the other hand, increases the
complexity of managing such directories.

• Also, there may be a single copy of the directory or multiple copies in different
sites.

• Multiple copies would provide more reliability, in accessing the directory.

• On the other hand, keeping the directory up to date would be considerably
more difficult, since multiple copies would need to be updated.

• Therefore, the choice should depend on the environment in which the system
operates and should be made by balancing all these factors.

