NEED FOR DDBMS

centralized controlled access to the data.

focus will be on integration rather than centralization.

PROGRAM 1

Data

Description

PROGRAM 2

Data

Description

PROGRAM 3

Data

Description

<€

>

PROGRAM 1

PROGRAM 2

Data Description

Data Manipulation

~ N
0)
FILE 1
4
Qz‘
p" D
|_
Z
FILE 2 s
5
\\“HEHH‘________,,,f— Y
1N
x
FILE 3

PROGRAM 3

» A centralized database management system (DBMS) is a complex software program that
allows an enterprise to control its data on a single machine.
» In centralized DBMS operational data of an enterprise are integrated and hence we have

» The computer network technology goes against all types of centralization efforts. So the

DATABASE

Centralized DB systems

P

M

o Simplifications:
= single front end

-

= one place to keep data, locks
= if processor fails, system fails, ...

Centralized DBMS on a Network

Communication

Network

Moving over to DDBMS

Distributed Nature of Organizational Units: Most organizations in current times are
subdivided into multiple units that are physically distributed over the globe. Each unit requires its
own set of local data. Thus, the overall database of the organization becomes distributed.

Need for Sharing of Data: Multiple organizational units often need to communicate with each
other and share their data and resources. It demands common databases or replicated databases
that should be used in a synchronized manner.

Support for Both OLTP and OLAP: Online Transaction Processing (OLTP) and Online Analytical
Processing (OLAP) work upon diversified systems which may have common data. Distributed
database systems aid both these processing by providing synchronized data.

Database Recovery: Replication of data automatically helps in data recovery. Users can access
data from other sites while the damaged site is being reconstructed. Thus, database failure may
become almost inconspicuous to users.

Support for Multiple Application Software: Most organizations use a variety of application
software each with its specific database support. DDBMS provides a uniform functionality for using
the same data among different platforms.

Case Study: Distributed Database

* Example: IBM has offices in London, New York, and Hong Kong.

* Employee data:
« EMP(ENO, NAME, TITLE, SALARY, ...)

* Where should the employee data table reside?
* Mostly, employee data is managed at the office where the employee works

* Periodically, IBM needs consolidated access to employee data
e E.g., IBM changes benefit plans and that affects all employees.

London New York
Payroll app Payroll app
i
EMP
London New York
Hong Kong
Payroll app Problem:

NY and HK payroll

apps run very slowly!
Hong Kong

London
Payroll app

0y
London Emp

Hong Kong
Payroll app
3
HK
Emp

New York

Hong Kong

New York
Payroll app

>
NY

Emp

~ Much better!!

Distribution provides
opportunities for
parallel execution

London
Payroll app

Annual
Bonus app

London

3
London
Emp

New York

N

Hong Kong

NRayroll app

S

Hong Kong

N

New York
Payroll app

NY
Emp

London
Payroll app

Annual
Bonus app

London

New York
Payroll app

>
‘ NY, HK
New Yor Emp

N

Hong Kong

NRayroll app

S

Replication improves
availability

Hong Kong

N

|dea of Distributed Database (DDB) System

The database is not stored at a single location. Rather, it may be stored in
multiple computers at the same place or geographically spread far away. Despite
all this, the distributed database appears as a single database to the user

So, DDB is, logically interrelated collection of shared data, physically distributed
over a computer network and data need to be structured.

“dia I:\ I:l Systemin As seen in the figure, the components of
the distributed database can be in

“Workstation Workstation
— — multiple locations such as India, Canada,
w Australia, etc. However, this s
transparent to the user i.e the database
appears as a single entity.
} Systemin

Canada

-

Workstation

Idea of Distributed Database (DDB) System conts.

A DDB is a collection of data which belong logically to the same system, but are spread over
the sites of a computer network. Here two important points are

1. Distribution —implies the whole data not residing at the same site

2. Logical correlation- data have some properties which tie them together

g2 DT ne

Computer center
bt amadirn B

‘ Database 1 | Database 2

omputer

What is not Considered as Distributed Database (DDB) System contd..

 The data of different branches are distributed

on three backend computers, which perform Sebpateiate
database management functions. ? E et
* The application programs are executed by a \ b
different computer, which requests database ks || ackns | | ke
access services from the backend when
necessary. (e Local network
* Here data distribution is not relevant from the -
application viewpoint and existence of local \ compater
L Ll

application is missing

Figure 1.3 A multiproces

Example 1.3 4

Consider the same bank of the

shown in Figure 1.3. The data o
“backend” computers, which P

« DDBMS in a Nutshell

»DDBMS is a set of multiple interconnected databases that is
distributed over the computer network or internet.

»DDBMS manages these distributed databases and provides
mechanisms so as to make these databases transparent to the
users i.e it appears as one single database to users.

»In these systems, data is intentionally distributed among
multiple nodes so that all computing resources of the
organization can be optimally used.

»Data in each site can be managed by a DBMS independent of
the other sites.

»The processors in the sites are connected via a network.
»DDBMS is not a loosely connected file system.

MAIN OPERATIONS OF DDBMS

»It is used to create, retrieve, update and delete distributed
databases.

»It synchronizes the database periodically and ensures that the
distribution becomes transparent to the users.

»It ensures that the data modified at any site is universally
updated.

»It is used in application areas where large volumes of data are
processed and accessed by numerous users simultaneously.

»It is designed for heterogeneous database platforms.
»It maintains confidentiality and data integrity of the databases.

| 3.1 Fundamentals of Distributed Databases

In recent years, the distributed database system has been emerging as an important area of infor-
mation processing, and its popularity is increasing rapidly. A distributed database is a database
that is under the control of a central DBMS in which not all storage devices are attached to a com-
mon CPU. It may be stored on multiple computers located in the same physical location, or may
be dispersed over a network of interconnected computers. Collections of data (e.g., in a database)
can be distributed across multiple physical locations. In short, a distributed database is a logically
interrelated collection of shared data, and a description of this data is physically distributed over a
computer network. A distributed database must ensure the following:

» The distribution is transparent - users must be able to interact with the system as if it is
a single logical system. This applies to the system performance and method of accessing
amongst other things.

» The transactions are transparent - each transaction must maintain database integrity
across multiple databases. Transactions may also be divided into subtransactions; each
subtransaction affects one database system.

® 5 ¢ "L 1 a M € CwcAaR ABEB G G =3

A distributed database management system (DDBMS) can be defined as follows.
A DDBMS consists of a single logical database that is split into a number of partitions or
fragments. Each partition is stored on one or more computers under the control of a separate DBMS,

32 = Distributed Database Systems

with the computers connected by a communication network. Each site may have a substantial
degree of independence. Each site in the distributed system is capable of independently processing
user requests that require access to local data as well as it is capable of processing user requests that
require access to remote data stored on other computers in the network. The sites in a distributed
system have agreed to work together so that a user can access any data from anywhere in the network
exactly as if the data are stored at the user’s own site. A distributed database system allows applica-
tions to access various data items from local and remote databases. Applications are classified into
two categories depending on whether the transactions access data from local site or remote sites.

» Local applications - These applications require access to local data only and do not require
data from more than one site.

» Global applications - These applications require access to data from other remote sites in
the distributed system.

Overview of DDB

* Distributed DBMS (DDBMS): Software system that permits the management
of the distributed database and makes the distribution transparent to users

 DDBMS Governs storage and processing of logically related data over
interconnected computer systems in which both data and processing
functions are distributed among several sites. So DDBS -> DDB + D-DBMS

* Sharing of data can be achieved by developing a distributed database system
which makes the data accessible by all sites and stores the data close to the
site where it is most frequently used.

* Distributed databases utilize multiple nodes. More nodes in the system
provide more computing power, offer greater availability, and resolve the
single point of failure issue.

 DDBMS ensures that updates in one database automatically reflected on
other databases (as applicable) in different sites.

POSSIBLE CASE OF DDBMS

» IBM’s DB2 running on IBM mainframe server, contains information about payroll and human resources.

» Oracle’s DBMS maintains project information and Microsoft’s SQL Server keeps track of production information.

* If we need to combine the information stored in different types of DBMS, we can adopt two approaches-.

* In manual approach, we would fetch data through queries form each individual server DB and then transfer
results from each DB to the personal workstation to merge them.

* For automated approach, the company needs to combine all the three Centralized DBs into a new, single,
distributed DB that needs to be implemented. Here the users will have the illusion that all the combined data
content is stored and controlled locally by one system. The DDBEs query processor handles all the necessary

coordination, execution, and merging automatically.

Workstation

Database Computer

Technology Networks

integration distribution

Distributed

Database
Systems

Workstation

Integration

Mainframe
DB Server

DE2 5 integration # centralization

3.4 An Example of Distributed DBMS

Assume that an IT company has a number of branches in different cities throughout the country.
Each branch has its own local system that maintains information regarding all the clients, projects
and employees in that particular branch. Each such individual branch is termed a site or a node. All
sites in the system are connected via a communication network. Each site maintains three relational
schema: Project for project information, Client for client information and Employee for employee
information, which are listed in the following.

Project = (project-id, project-name, project-type, project-leader-id, branch-no, amount)
Client = (client-id, client-name, client-city, project-id)
Employee = (emp-id, emp-name, designation, salary, emp-branch, project-no)

Here the underlined attributes represent the primary keys for the corresponding relations. There
also exists one single site that maintains the information about all branches of the company. The
single site containing information about all the clients, projects and employees in all branches of
the company maintains an additional relational schema Branch, which is defined as follows:

Branch = (branch-no, branch-name, branch-city, no-of-projects, total-revenue)

Distributed Database - User View

.
o ® QQ.‘
N aa “C
O Distributed Database ® O
AL P P ®
o %0 0 00
o0 o O
(X »
®9

Distributed DBMS - Reality

User
[Query]

User
Application

User
A n

pplicatio

Distributed DBMS - Reality

& Distributed DBM® X | € Centralized Datal X

@ Whatls a Distribu X @ Distributed datab X ﬁ PPT Distributed [X @;Distributed)BP« X | @

C @ slideplayer.com/slide/5762104/

Slide

Distributed Datal X | & Distributed Datat X | + (v - X

) (IR

Component Architecture for a DDBMS

LDBMS : Local DBMS component
DC : Data communication component
GDD : Global Data Dictionary

[SlidePlayer 5/56 WOOO®®)

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Po

R
ey

ry, including cookie policy. | | agree

02:48

29°C Rainshowers ~ O ® 7 Q) ENG 09-08-2021 %_;,

-

Distribution Design Tasks

global Eelation R

E1

K1

F]'ag:m-e nts

Allocations

Node 1

Node 2

Node 3

Distributed Database Systems

»Multiple processors (+ memories)

»Heterogeneity and autonomy of “components”

» A distributed database system consists of loosely coupled sites that share no
physical component

» Database systems that run on each site are independent of each other

» Transactions may access data at one or more sites

Distributed DBMS Environment

Communication

Mohali

Bangalore

S

@uter Net@

Corporate Employee

Database

Mohali
Database

Mohali

Computer Network

Chennai
Database

Bangalore
Database

Mangalore Database

Distributed Data Processing

»Number of autonomous processing elements/logic (may not be homogeneous)
interconnected by a computer network cooperates to perform the assigned task.

»Data used by a number of applications may be distributed over number of sites.

»The control of the execution of various tasks might be distributed instead of
being performed by one computer system.

» Distributed processing better corresponds to the organizational structure and
such a system is more reliable and more responsive. This distribution actually
copes up with the large-scale data management problems

Site 1 = Site 1 L
Communication
Network

Site 4 Site 3 Fﬂ;j— Site 4 Site3|—

Central Database on a Network DDBS Environment

Site 5

Communication
Network

Characteristics of Distributed Database Management Systems

» Collection of logically-related shared data

» Data split into fragments

»Fragments may be replicated

»Fragments/replicas allocated to sites

»Sites linked by a communications network

»Data at each site is under control of a DBMS

» DBMSs handle local applications autonomously

»Each DBMS participates in at least one global application

() Tightly coupled ystems - n these systems, thre s a single systemwide globa primry mem
ory address space) that i shared by allprocessors connecte to the system. Ifany processor
Writes some nformation into theglobal memory it an beshared by ll other processor in the
system, For example if processor writs th value 200 toa memory locaton y,any other po-
cessorsubsequently reading from thelocaion y will gt the value 200, Thus, inthese systems,
any communication between the processors usuall takes place through the shared memory,

(i) Loosely coupled systems - In these systems, processors do not share memory (clocks and sys-
tem buses also), and each processor has ts own local memory. In tis case if a processor writes
the value 200 to a memory location y, this write operation only changes the content of it own
local memory and does not affect the content of the memory of any other processor. In such
systems, all physical communications between the processors are established by passing mes-
sages across the network that interconnects the processors ofthe system, The loosely coupled

The ightly coupld ystem i lustratedin fgure 1, system is depictedin figure 22
O, | | U, | | SyemoideShand | | COU,, | | U Localmenory | | Locamenory || Local memory || Locl memory
Clobal
- o, w, || oo | | o
Interconnection hardware
Communication network

Fig, 2.1 ATightly Coupled Multiprocessor System

aE) a5 P
| WChotycly A BED At | R e n B

Fig 22 ALoosely Coupled Multiprocessor System

"

LLKAS } i
PARALLEL PROCESSING SYSTEMS

\ - 022
"9 Mostydouy A BB 1 72 9) 86 sl %)

PARALLEL DATABASES

Database systems that run over multiprocessor systems are called as parallel
database systems and they are of three main types-

1. Shared memory (tightly coupled) architecture-Multiple processors share
secondary (dISk) storage and also share primary memory.

<> Distributed DBM 4 ‘ © F sed Data x ‘ @ What Is a Distribe. X ‘ Distributed datab: X ‘ | ~ ributed x ‘ € Query Optimizati X ‘ (i Dis ed Data G Distributed Datal X + ([~} = x

C @ google.co.in/books/edition/Distributed_Database_Systems/0i9ulJ78LtAC?hl=en&gbpv=1&dqg=inauthor:"Chhanda+Ray"&printsec=frontcover @ Y » 2

Google Books Page 23 - Search in this book Q < > Q E mm : x

WIOECIIT UI€ 1INIEIConmnecuon networKk pecoInes a DOtUuenecK. onareag-imemory arcrurecture 1s iuuaus-

trated in figure 2.3.

Pl P2 P3 Pn

Fig. 2.3 Shared-memory Architecture

Shared-memory architecture provides a number of advantages such as simplicity and load sharing.
In this architecture, as all the information is shared by all processors, developing database software
is not very difficult, and also it dces not vary too much from the database software that is designed
for a single-processor system. Load sharing is excellent as it can be achieved at runtime using the
shared memory.
a5 € - B ® 2 @B v aaiss A G e oo 0%,)

PARALLEL DATABASE contd..

2. Shared disk (loosely coupled) architecture- Multiple processors share
secondary (disk) storage but each has their own primary memory.

@ Distributed DBM: X | > File-based Data | X | @ WhatlsaDistrib. X | [Distributed datab X | [PPT Distributed [X | &€ Query Optim | @) Distributed Datal X G Distributed Datal X o - X
C & google.co.in/books/edition/Distributed_Database_Systems/0i9uJ)78LtAC?hl=en&gbpv=1&dq=inauthor:"Chhanda+Ray"&printsec=frontco & d R &
Go gle Books Page 24 v Search in this book Q < > Q@ Q I : X
v w L=
in figure 2.4.
Ml M2 M3 Mn
Pl P2 P3 Pn

Fig. 2.4 Shared-disk Architecture

DEC (Digital Equipment Corporation) cluster running Rdb was one of the early commercial users
of the shared-disk database architecture. Rdb is now owned by Oracle and is called Oracle Rdb.

C =T R & & ¢ _3ccAQss A G m Gz e o0 B

PARALLEL DATABSE contd..

3. shared nothing architecture- every processor has its own primary and
secondary (disk) memory, no common memory exists, and the processors
communicate over a high-speed interconnection network (bus or switch)

& Distibuted DBM: X | @ File-based Date) X | @ WhatlsaDistio: X |] Distibuted datet: X | [Bf PPT Distributed L X | € QueryOptimizati X | . DisrbutedDatet X G Distibuted Dtz X 4 0 - 0 X
C # googlecoin/books/edition/Distributed Database Systems/0i9uli78LtAC?hI=en8igbpv=18dg=inauthor:"Chhanda+Ray"&iprintsec=frontcover Q % % a Figure 25'3
Google Books Page 25 | (—— QA <> @QQ 1 m : X Some different database system architectures. (a) Shared nothing architecture.

(b) A networked architecture with a centralized database at one of the sites. (¢)
A truly distributed database architecture.

Review of Database Systems * 25

(@) Computer System 1 | | Computer System 2

l Disk| l Disk2] Diski Diskn D
cPU u CPU
] |

Memory Memory

Mi M2 M3 Mn

5

I

l

Switch

Computer System n

Interconnection Network :

Fig. 2.5 Shared-Nothing Architecture Memory

a4 @ = Q CH | ¢ S WCAUS ACBEDBG o, B

Parallel v/s Distributed Database

 PARALLEL DATABASE- A multiprocessor system is symmetrical, consisting of
number of identical processors and memory components, and controlled by
one or more copies of the same operating system. In shared nothing
multiprocessor systems, there is symmetry and homogeneity in the nodes.

* DISTRIBUTED DATABASE- For distributed systems, heterogeneity in both
operating system as well as hardware is quite common.

’©’7 Central Site
DB, (Chicago) DB,

What is not a DDBS?

(b)

B A timesharing computer system
B A loosely or tightly coupled multiprocessor system

B A database system which resides at one of the
nodes of a network of computers - this is a
centralized database on a network node

Site

(San Francisco)

[

Site

(Los Angeles)

(©)

Site
(New York)
' Communications

Network
U Site
' (Atlanta)

=8
| [Sea)
[Communications S~——

\ Network e
=)

i

A Distributed DBMS may have a number of local applications, but it has at least one global
application. Thus, a distributed DBMS has the following features:

(i) Adistributed DBMS is a collection of logically related shared data.
(ii) The data in a distributed DBMS is split into a number of fragments or partitions.

(iii) Fragments may be replicated in a distributed system.

(iv) Fragments/replicas are allocated to different sites.

(v) Inadistributed system, the sites are linked by communications network.
(vi) The data at each site is under the control of a DBMS.

(vi) The DBMS at each site has its own right, that is, it can handle local applications
independently. i

(viii) Each DBMS in a distributed system participates in at least one global application.

Every site in a distributed DBMS may have its own local database depending on the topology of
the Distributed DBMS.
¢ -L ©) 1 s ®@ € . 29°C Rainshowers A B B 01 7 9) BNG 0 =3

Distributed Database Features

* Location independency - Data is physically stored at multiple sites and
managed by an independent DDBMS.

 Distributed query processing - Distributed databases answer queries in a
distributed environment that manages data at multiple sites.

 Distributed transaction management - Provides a consistent distributed
database through commit protocols, distributed concurrency control
techniques, and distributed recovery mechanisms.

* Seamless integration - Collection of interconnected databases residing at
different sites basically represents a single logical database.

* Network linking - All databases in a collection are linked by a network and
communicate with each other.

Functions of Distributed Database

. Application Interfaces- This is used to interact with the end users and remote
databases.

. Distribution Transparency- User should be unaware about the distributed
nature of the system and a strong trade off between distribution transparency
and performance.

. Mapping Techniques- DDBMS must provide mapping techniques to determine
the data location of local and remote fragments.

. Management of Replicated Data- DDBMS must have the ability to decide
which copy of a replicated data item to be selected while executing a data
request.

. Extended Query Processing & Optimization- DDBMS provides query
optimization for both local & global queries to find the best access strategy.

Functions of Distributed Database conta ..

6. Distributed Transaction Management- Consistency of data should not be
violated by local and distributed transactions.

7. Distributed Backup & Recovery Services- These services ensures availability
and reliability of a database in case of failures.

8. Support for Global System Catalog- DDBMS must contain a global system
catalog to store data distribution details for the system.

9. Support for Global Database Administrator- This is responsible for
maintaining the overall control of data and programms in DDBMS.

10. Distributed Security Control- This feature is used to maintain appropriate
authorization/access privileges to the distributed data.

DATE’S 12 OBJECTIVE RULES FOR DDBMS

Local Autonomy- Operations at a particular site should be managed by that
particular site and no site should depend on some other site.

Non-Reliance on a Central Cite- No site relies on a central cite, i.e there
should be no one site without which the system cannot operate.

Continuous operations — Ideally, there should never be a requirement for a
planned system shutdown due to various database related operations.

Location Independence- users are unaware about the physical storage of
the data and they can access the data from all sites.

Fragmentation Independence- Users are unaware of data fragmentation
and will be able to access all data no matter how it is fragmented.

Replication Independence- Users are unaware that the data item is
replicated and neither they can access a particular data item copy nor they
can modify all data copies.

DATE’S 12 OBJECTIVE RULES FOR DDBMS contd..

7. Distributed Query Processing- Distributed queries can reference data form
more than one site and query optimization is performed transparently.

8. Distributed Transaction Processing- both local and global transactions must
ensure ACID properties.

9. Hardware Independence- DDBMS should run on a Varity of H/w platforms.

10. Operating System Independence- DDBMS should run on a Varity of
operating systemes.

11. Network Independence- It is possible the DDBMS run on a Varity of
communication networks.

12. Database Impendence- DDBMS can be made up of different local DBMS set
ups, i.e supporting different underlying data models.

Types of Distributed Databases

Distributed Database Environment

Homogeneous Heterogeneous

Autonomous Non-Autonomous Federated Multidatabase

HOMGENEOUS DISTRIBUTED DATABASE

»In an ideal scenario all sites will share a common global schema, (although some
relations may be stored only at some local sites) and run the same DBMS software.

» Sites are aware each other sites and they cooperates in processing the user requests.

» Mostly same identical operating systems even if the processors are not same.

» Each site surrenders autonomy in terms of right to change the schema or software

» Appears to the user as a single system and the database is accessed through a single
interface.

» Homogeneous DDBMS provides several advantages such as-

* Simplicity,

* ease of designing and management

* incremental growth.

These systems improve performance by exploiting parallel processing capabilities of

multiple homogenous nodes.

HOMGENEOUS DISTRIBUTED DATABASE

Manufacturing Distributed Database Headquarters

HQ.ACME.COM

SALES.ACME.CCM

Types of Homogeneous Distributed Database

* There are two types of homogeneous distributed database -

« Autonomous - Each database is independent that functions on Iits
own. They are integrated by a controlling application and use message
passing to share data updates.

 Non-autonomous - Data Is distributed across the homogeneous
nodes and a central or master DBMS co-ordinates data updates across
the sites.

HETEROGENEOUS DISTRIBUTED DATABASE

»Sites may run different operating systems and DBMS that need not be
following same underlying data model (i.e relational, hierarchical, object

oriented).
»Sites having their own local databases and hence different schemas and

products.

»Each site is completely unaware of other sites and hence limited
cooperation among those sites in processing user requests.

»To allow communication among the different sites interoperability
between different DBMS products i.e translations are required.

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

* Heterogeneity may occur at different levels-

1. Different Hardware- If the hardware is different but the DBMS software is
same then translation is straightforward.

2. Different DBMS Software- Here the execution of global trnsactions are very
complicated as it involves mapping of one data structures in one model to the
equivalent data structures in another model. The translation of query
language is also essential.

3. Different Hardware and different software- It is extremely complex as
translation of both hardware and DBMS software are required.

The provision of a common conceptual schema which is formed by integrating
individual local conceptual schemas, adds extra complexity to the distributed
processing.

To address such heterogeneity, gateways are used in some relational systems
which basically works as a query translator, but it may not support transaction
management and homogenizing the structural and representational differences
between different DBMSs.

Types of Heterogeneous Distributed Databases

* Federated - The heterogeneous database systems are
independent in nature and integrated together so that
they function as a single database system.

* Un-federated - The database systems employ a central
coordinating module through which the databases are
accessed.

FEDERATED DATABASE SYSTEM (FDS)

» Several decentralized autonomous databases appear to function as a single
entity and FDS transparently integrates multiple autonomous database
systems into a single federated database.

» A federated database, or virtual database, is the fully integrated, logical
composite of all constituent databases in a federated database system

»FDS must be able to decompose the query into subqueries for submission to
the relevant constituent DBMS's, after which the system must composite the
result sets of the subqueries.

» Because various DBMS employ different query languages, so FDS can apply
wrappers to the subqueries to translate them into the appropriate query
languages

»The goal of the system is to ensure that a typical query will need to use only
one component, thus drastically reducing the number of rows that need to be
searched

DDBMS DESIGN ISSUES

»These are applications where data and its accesses are inherently distributed in
different sites to increase the availability during failures.

» The methodology for designing DDBMS is same as that of centralized database.
However, some additional factors are considered here such as-

A. Data Replication- If relation r is replicated, a copy of relation r is stored in two
or more sites. This concept having a number of advantages and disadvantages

(i) Availability- If one of the site containing relation r fails, then relation r can be
found in other sites and the system can continue to process queries involving r.

(ii) Higher parallelism- For read operation on relation r, several sites can process
gueries involving r in parallel and hence less data movement between sites.

(iii) Increased overhead on update- The system must ensure that all replicas are
consistent. Thus, whenever r is updated, the update must be propagated to all
the sites containing its replicas of .

DDBMS DESIGN ISSUES (contd..)

B. Data Fragmentation- Database may be broken up into logical units called fragments
which will be stored at different sites. Three Types of Data Fragmentations are:

e Horizontal fragmentation: It divides a table 'horizontally' by selecting the relevant
rows and these fragments can be assigned to different sites.

e Vertical fragmentation: A vertical fragment of a table keeps only certain attributes of
it. It divides a table vertically by columns and these fragments are stored in different
sites. It is necessary to include the primary key of the table in each vertical fragment so
that the full table can be constructed if needed.

o Hybrid fragmentation: It comprises the combination of both Horizontal and Vertical
Fragmentation. Each fragment can be specified by a SELECT-PROJECT combination of
operations. In this case the original table can be reconstructed be applying union and
natural join operations in the appropriate order.

DDBMS DESIGN ISSUES (contd..)

C. Data Transparency

The user of a distributed database system should not be required to know either
where the data are physically located or how the data can be accessed at the
specific local site. This is called data transparency and it can take several forms:

Fragmentation transparency- Users are unaware about how a relation is
fragmented.

Replication transparency- Users do not have to be concerned with what data
objects have been replicated, or where the replicas have been placed.

Location transparency- Users are not required to know the physical location of
the data. The distributed database system should be able to find any data as long
as the data identifier is supplied by the user transaction.

[

External
schema

)

Extemal
schema

l

Federated
schema

FDS ARCHITECTURE

Extemal
schema

1t

Federated
schema

[

[

Export

schema

I

Export
schema

[

|

T
Component

schema
R

(" . i,
Local

schema
SN

Component
DBS

| [rg Y57

po
chema

el

Component

schema
S M)
T

Local

schema
Ny

Component
DBS

Figure 25.6
The five-level schema architecture

in a federated database system
(FDBS).

Source: Adapted from Sheth and
Larson, ‘Federated Database Systems
for Managing Distributed,
Heterogeneous, and Autonomous
Databases’ ACM Computing Surveys
(Vol 22: No. 3, September 1990).

The five level schema architecture-

» Local Schema is the conceptual concept expressed
in primary data model of component DBMS.

» Component Schema is derived by translating local
schema into a model called the canonical/common
data model.

» Export Schema is a subset of component schema
(contain access control information) and it helps in
managing the flow of control of data.

» Federated Schema is an integration of multiple
export schema and it includes information on data
distribution generated when integrating export
schemas.

» External Schema defines a schema for a
user/applications or a class of users/applications.

ADVANTAGES OF DISTRIBUTED DATABASE

Sharing of Information- User at one site accesses data residing at other sites.

Faster Data Accessing- If end user requested data available locally, then faster data
accessing as compare to the remotely located centralized system. Also it is possible
to split a query into a number of sub queries that can be executed in parallel at
different sites.

Increased Availability & Reliability- If a transaction accessing data item form a
failed site, then it can find it form other sites due to data replication and hence non
termination of the transaction.

Processor Independence- Since users can access any available copy of the data
item, so user request do not depend on a specific processor.

Modular Extensivity- new sites can be added to the network without affecting the
operations of other sites. Such flexibility allows organizations to extend their
system in a relatively rapid and easier way.

PROMISES OF DDBMS

1. Transparency Management for Distributed and Replicated Data

» Transparent system “hides” the implementation details from the end user and this concept
helps in building the complex applications.

» Storing each partition of a relation at different sites is known as fragmentation.

» Furthermore, it may be preferable to duplicate some of these fragmented data items at
different sites for performance and reliability reasons.

» Fully transparent access means that the user can still pose the query, without paying any
attention to the fragmentation, location or replication of the data.

Boston employees, Paris employees, Paris employees, Boston employees,
Boston projects Paris projects, Boston projects

EMP(ENO, ENAME, TITLE)
PROJ(PNO, PNAME, BUDGET)

E
O

T 1 . SAL(TITLE, AMT)
Boston Paris 4. ASG(ENO, PNO, RESP, DUR)
Communication Query:

Network

SELECT ENAME, AMT
FROM EMP, ASG, SAL
WHERE ASG.DUR > 12

San

m-wmenoo Franciseo 4@ AND EMP.ENO = ASG.ENO

WMO employees, San Francisco employees, AND SAL.TITLE = EMP.TITLE

Waterloo projects, Paris projects San Francisco projects

Fig. 1.5 A Distributed Application

Different Forms of Transparencies

Data Independence- implies immunity to the user applications such that
any changes in data definition and organization will be having no impact to
the end user level.

Logical data independence —refers immunity to the user applications
related to changes in the logical structure (i.e., schema) of the database.

Physical data independence- deals with hiding the details of the storage
structure from user applications.

User applications should not be concerned with the detalls of physical data
organization. Therefore, the user application should not need to be
modified when the data organization changes.

Network Transparency

User should be protected from operational details of the network.

There will be no difference between database applications run on centralized

database and distributed database.

Network transparency categorization from the viewpoint of-

1. Network services provided- uniform means by which services are accessed.

2. Distribution Transparency (DBMS perspectives) - requires that users do not

have to specify where the data is located.

Sometimes two types of distribution transparencies are identified:

A. Location transparency- command used to perform the task is independent
of both the location of the data and the system on which the operation is
being carried out.

B. Naming transparency- unigue name is provided for each object in the
database. In the absence of naming transparency, users are required to
embed the location name (or an identifier) as part of the object name.

Replication Transparency

» For performance, reliability, and availability, it is usually desirable to
distribute the data in a replicated fashion across the network.

» Replication transparency refers only the existence of replicas, not to their
actual locations.

» Distributing these replicas across the network in a transparent manner Is
the domain of network transparency.

Fragmentation Transparency

» Relations are divided into smaller fragments and each fragment is

treated as a separate object (i.e., another relation) for performance,
availability and reliability.

»In fragmentation we have to deal with the problem of handling user
gueries that are specified on entire relation. Typically, this requires a
translation from a global query to several fragmental queries.

»Fragmentation transparency is mainly related to query processing.

DIFFERENT LAYERS OF TRANSPARENCY

The level of transparency is inevitably a compromise between the ease of use and the

difficulty and overhead cost of providing high levels of transparency.

Language Transparency (API level)- requested service in the user language is converted to the

required operations which is to be taken care of by the compiler or interpreter. This layer

provides high level data access to the user. Here no transparent service is provided to the

implementer of compiler or interpreter.

»In the second layer management of network resources is taken over by the distributed
operating system or the middleware.

» The third layer at which transparency can be supported is within the DBMS. It is the

responsibility of the DBMS to make all the necessary translations from the operating system
to the higher-level user interface.

Fig. 1.6 Lavers of Transparency

2. RELIABILITY THROUGH DISTRIBUTED TRNSACTIONS

» Distributed DBMSs are intended to improve reliability since they have
replicated components and, thereby eliminating the single point of
failure.

> Distributed transactions are executed at a number of sites which
actually accesses the local database.

» user applications do not need to be concerned with coordinating
their accesses to individual local databases nor do they need to worry
about the possibility of site or communication link failures during the
execution of their transactions.

3. Improved Performance

Improved performance for distributed DBMSs is based on two points.

1. Data localization- Data to be stored in close proximity to its points of use. This

has two potential advantages:

(i) Since each site handles only a portion of the database, so contention for CPU
and 1/O services is not as severe as for centralized databases.

(ii) Localization reduces remote access delays that are usually involved in wide
area networks

2. Inherent parallelism of distributed systems-

(i) Inter-query parallelism- ability to execute multiple queries at the same time.

(ii) intra-query parallelism- breaking up a single query into a number of

subqueries each of which is executed at a different site, accessing a different part

of the distributed database.

4. Easier System Expansion

»1In a distributed environment, it is much easier to accommodate increasing
database sizes.

»expansion can usually be handled by adding processing and storage power to
the network.

»0One aspect of easier system expansion is economics. It normally costs much
less to put together a system of “smaller” computers with the equivalent power
of a single big machine.

COMPLICATIONS ASSOCIATED WITH DDBMS

1. Need for Complex and expensive software: DDBMS often demands complex
and more expensive software for data transparency and also co-ordination
across several sites.

2. Processing overhead: Even simple operations may require a large number of
communications and additional calculations to provide uniformity in data
across the sites.

3. Data integrity: The need for updating the duplicated data in multiple sites
mainly poses problems. In this context, DDBMS is responsible for-
(i) choosing one of the stored copies of the data for access in case of retrievals
(ii) making sure that the update is reflected on every copy of the data item.
4. Dealing with Site Failure: If some site fails or some communication link fails
while an update is going on, the system must make sure that the updated effects
will be reflected on the concerned data item residing at the failing site as soon as
the system recovers from the failure.

COMPLICATIONS ASSOCIATED WITH DDBMS (contd..)

5. Maintaining Synchronization Among Sites: Since each site cannot have
instantaneous information on the actions currently being carried out at the
other sites, so maintaining synchronization among different sites are
considerably harder than the centralized system.

6. Security concerns: Since data exchange occurs among different sites so
maintaining proper security of the exchanged data is a big challenge apart from
secure communication channel problem.

7. Overheads associated with improper data distribution: Responsiveness of
gueries largely dependent upon proper data distribution. Improper data
distribution often leads to very slow response to user requests.

Distributed DBMS Architecture

Architecture of a system deals with Distribution

1. Components of the system

2. Functions of the system Peer-to-Peer
3. Interaction between all components y DDsss

DDBMS architectures are generally
developed depending upon three
parameters: Client/Server

1. Distribution: It states the physical Systems
distribution of data across the different sites.
2. Autonomy: It indicates the distribution of

Multidatabase

7 Systems

control of the database system and the
degree to which each constituent DBMS can
operate independently.

3. Heterogeneity: It refers to the uniformity

or dissimilarity of the data models, system
components and databases.

Autonomy

Client Server Architecture

* It has a number of clients and a few mam—

servers connected via a network bllent 1

* A client sends a query to one of the ,L—‘__?_

servers. The earliest available server
solves it and replies.

Communication

* It is simple to implement and execute due
to centralized server systems.

' l

SERVER

Client-server architecture

Client-Server Architecture with Client and Server Roles

* This is a two-level architecture where the functionality is mainly divided into
servers and clients. This two level concept basically promotes easier
management of complex DBMS systems and also the complexity of data

distributions. _ Imléfgrce Appfzcljg;'a;ﬁn
* The primary server functions are mainly --- ‘gg p—
data management, query processing, 7 | Communication Sofware
query optimization and transaction management. queries T it

Communication Software

o

* Client functions mainly include user interface. However,

Semantic Data Controller

they also performs consistency checking of user queries

Query Optimizer

Transaction Manager

and at times the transaction management.

Recovery Manager

@3~~~ >T0T

Runtime Support Processor

* The two different types of client - server architectures

System

* Single Server-Multiple Client (centralized systems)

* Multiple Server-Multiple Client i
Database
S—

Types of Client server Architecture

* Using DDBMS primitives — client local DDBMS component routes the query to
to server which accesses the DB and sends back the results.

* High distribution transparency (as file names are global) and works like a
centralized system

* Low efficiency as answer travels one tuple at a time.

USING DDBMS PRIMITIVES

DATABASE ACCESS
PRIMITIVES CLIENT SITE

APPLICATION |
PROGRAM

>
SERVER SITE ” RESULTS DATABASE
DDB

Types of Client server Architecture contd..

e Using auxiliary programs & RPC —Remote database can also be accessed by an
via an auxiliary program. This prog. is written by an application programmer
which returns the results to the requesting application.

* The applications asks the auxiliary program to excute on the server and to send
back the result.

* The auxiliary prog. assembles tuples into result sets improving transmission
efficiency.

USING AUXILIARY PROGRAMS AND RPC

' | CLIENT SITE
APPLICATION
DBMS,
PROGd }”
RPC t -

—t—_——ee—_—,ee—,ee—,e—, ettt —, e}V ——Y——_—_—_——e—_—_e—_ee— e e ————

SERVER SITE

AUXILIARY » pewms,
PRoSn. RESULTS DATABASE
.

Client-Server Architecture

* Single server multiple client scenario

Client

‘ network

Client

Application
server

Database
server

N
@

network

contd ..

Client-Server Architecture contd

Multiple Server-Multiple Client scenario- two alternative management strategies-

1. each client manages its own connection to the appropriate server
OR

2. each client knows only its “home server” which then communicates with other
servers as required.

* The first approach loads the client machine with additional responsibilities and
this is known as “heavy client” system.

* The second approach leaves the data management functionality for the servers.
Thus, transparency of data access is promoted and this is mainly “light clients.”

Client-Server Architecture

* Heavy client systems

Client 1

Application Programs

Client Services

Communications
Manager

Communication

Link

Communications
Manager

Database
Services

Server 1

contd..

Client N

Application Programs

Client Services

Communications
Manager

Communications
Manager

Database
Services

Server M

Client-Server Architecture contd..

* The application server approach
(indeed, a n-tier distributed Client Client
approach) can be extended by the
introduction of multiple database <—H—I-|—>
servers and multiple application network
Servers Application Application

e each application server s S >eTYE!

dedicated to one or a few networ
applications, while database

servers operate in the multiple

server fas h iO N Database Database Database
server server server

i e

Collaborating Server Architecture

* This architecture is designed to run a single query on multiple servers.

 Specific server breaks the single query into multiple quires and the results are
combined and sent back to the client.

* This architecture has a collection of database servers. Each server is capable
of executing the current transactions across the database.

E ‘ Receiving ivision of | Iﬁun Query on
: Query Query local servers

; !

Middleware Architecture

* This is designed in such a way that single query is executed on multiple servers.

* This architecture uses local servers to handle local queries and transactions.

* The middleware software are used for execution of queries & transactions
across one or more independent database servers.

Apoi caon . " 0w Apphcaton

e

A- 3

Viteware
Cwrbuted System Servces)

Plafom |rerface Paform rtedface
Sgrnm A Patom 8 "

OpratrgSan | | Operming Symem

Peer-to-Peer Systems - ——

* No specific client or server. / "

e Each peer acts both as a client and server - -
depending on whether the node is requesting ’ .
or providing service.

* Each node considered as peer.

* These peers share their resource with other
peers and co-ordinate their activities.

* Pattern of communication between the pairs
entirely depends on the application.

e Each object is replicated in several
systems/sites to distribute the load and manage
failure of sites

* Data allocation & retrieval is more complex
than client-server systems

* This architecture generally has four

Peer-to-Peer Systems

levels of schemas:

e External Schema: Depicts user view of

data.

* Global Conceptual Schema: Depicts
the global logical view of data.

* Local Conceptual Schema: Depicts
logical data organization at each site.

* Local Internal Schema: Depicts
physical data organization at each site.

contd..

External

External

External
Schema N

Global Conceptual Schema

Local
Conceptual
Schema N

Schema 1 Schema 2
Local Local
Conceptual Conceptua
Schema 1 Schema 2
Local Local
Internal Internal
Schema 1 Schema 2

Local
Internal
Schema N

General Reference Architecture of DDBMS

Schema Architecture

Global schema

Site independent schema

FHagmentation

s<hema

Allocation schema

(Other sites)

Local mapping Local mapping

Schemal

whemal

Y

DOMS of site?

-

DBMS of stel

Local Loce!
database database
atl dtel al ste)
v v

External Schema 1

Local

Conceptual
Schema 1 (LCS)

Local
Internal

External Schema N

Conceptual

Global

Schema (GCS)

Global
Distribution
schema (GDS)

Local
Conceptual
Schema 2 (LCS)

Local
Internal
Schema 2 (LIS)

Schema 1 (LIS)

Local
Conceptual

Schema M (LCS)

Local
Internal
Schema M (LIS)

Schema Architecture for peer to peer systems

* Global schema- defines data as a whole, not fragmented at all.

* Employee (e_no, e name, dept_no)
* Fragmentation Schema- Specifying the way global relations are fragmented
* Emplyeel -> dept_no=‘production” and dept_no=Emplyee2 -> ‘sales’

* Allocation schema — determining the sites where a particular fragment is
allocated, for ex:- Emplyeel -> at site 1,2 and Emplyee2 -> at site 3,4

* Local mapping schema — helps in identifying the global relation schema for any
local database relation schema. It is the local mapping schema which facilitates
the integration of local database sites into one single global database. It is very
much similar to the 3 schema architecture of centralized database.

DISTRIBUTED ACCESS PLAN

PART i
\PART#\ WAREHOUSE | SUP# I |

* Global query:

SELECT * FROM PART

WHERE SUP# = S1

OR

SELECT * FROM PART, SUPPLIER

WHERE SUP# = S1 AND SUPPLIER.SUP# = PART.SUP#

DISTRIBUTED ACCESS PLAN contd..

(b A COORSY S =~

. 1. Cenitral
o administration

\

}

Supplier file

e Example: = e 7 SRR Shai e

e Let us assume that the database is dlstrlbuted over three S|tes-

* The supplier file is located at sitel(central administration), while the part file is splited into
two different subfiles located at site 2 and 3.

. DISTRIBUTED ACCESS PLAN

Send sites 2 and 3 the supplier number SN
At sites 2 and 3

Execute in parallel, upon receipt of the supplier numbe

Find all PARTS records havii
SUP # == SN;j;

Send result to site 1.

At gite 1 .

- Merge results from sites 2 and '3
Oatpuf t,he r&mult.

>D|str|buted access plan can be wrltten by the programmer or produced
automatically by the optimizer.

» Global Optimization:- It determines which data files must be transmitted
between sites. The main optimization parameter here is the communication cost,
although the cost of accessing the local databases should also be taken into
account in some cases. The relative importance of these factors depends on the
ratio between communication costs and disk access costs.

» Local optimization:- it decides how to perform the local database access at each

site; the problems of local optimization implied for traditional non-distributed
databases.

Peer-to-Peer Systems contd..

* Physical data organization at each site may be different. Hence each site needs
an individual internal schema definition called as local internal schema (LIS).

* The enterprise view of the data is described by global conceptual schema
(GCS) and it describes the logical structure of the data at all sites.

* To handle data fragmentation and replication, the logical organization of data
at each site needs to be described and therefore, a third layer in the
architecture is added known as local conceptual schema (LCS). The global
conceptual schema is the union of the local conceptual schemas.

* Finally, user applications and user access to the database is supported by
external schemas (ESs), defined as being above the global conceptual schema.

e distributed DBMS translates global queries into a group of local queries, which
are executed by distributed DBMS components at different sites that
communicate with one another

N

SOFTWARE COMPONENT OF DDBs

The database management component (DB)
The data communication component (DC)
The data dictionary (DD), which is extended to represent information about

the distribution of data in the network o
The distributed database component (DDB) WH ﬁz’f

Local
$atabae 1

pha |
by |

7 Site |
e it OO S ST ST By N T T WAL S S e e s T o —— %
RS : Site 2.

Components of a Distributed DBMS

User Processor- handles interactions with user.

1. user interface handler- interprets the user
commands and also formats the result data sent back
to the user.

2. semantic data controller- checks the integrity
constraints and authorizations that are defined in
global conceptual schema.

3. global query optimizer and decomposer-
determines an execution strategy to minimize the
cost and translates the global queries into local ones.
4. Global execution monitor- coordinates distributed
execution of user request. This part is also called as
distributed transaction manager. Execution monitors
at various sites usually communicate with each other
while executing queries.

{ USER)

System ~ User
responses requests

USER
PROCESSOR

Y

User Interface
/ Handler

v

External
Schema

/

Semantic Data
Controller

|

Global Query
Optimizer

Global
Conceptual
Schema

Global Executi
Monitor

9

w

DATA
PROCESSOR

Local
(l] uery Proces SCD < '

Local
Conceptual
Schema

Local
Recovery Manag

System
er Lﬂg
—

Runtime Suppo
Processor

Y

Local Internal
Schema

Components of a Distributed DBMS contd..

* Data processor — deals with data storage and having the following parts-

1. local query processor- responsible for choosing the best access path to access
any data item. The term access path refers to the data structures and algorithms
used to access the data. A typical access path, for example, is an index on one or
more attributes of a relation

2. Local recovery manager- responsible for making sure that the local database
remains consistent even when failures occurs

3. run-time support processor- physically accesses the database according to
the physical commands generated by the query optimizer.

* The run-time support processor is the interface to the operating system

* It contains the database buffer (or cache) manager, which is responsible for
maintaining the main memory buffers and managing the data accesses.

N.B- In peer-to-peer systems, both the user processor modules and the data
processor modules should be present in each machine

Multi - DBMS Architectures

* Multidata base systems (MDBS)- individual
DBMSs (whether distributed or not) are full
autonomous and having no cooperation wit
each other. They may not even “know” of

each other’s existence or how to talk to each
other.

»In case of logically integrated distributed (igs [les | LS eS| ILES
DBMS, GCS is the conceptual view of entire 12 13 GCS LES, n m

database, while in distributed MDBMS, it is
the collection of some of the local DBMSs
that are sharable.

»So, global database in logically integrated
DDBMS is actually equal to the union of local LCS, LCS
databases, whereas in multi-DDBMS it is only
a subset of the same union.

»Hence GCS in multi-DDBMSs is the mapping
from local conceptual schemas to a global
schema, however for logically integrated LB,
DDBMS the mapping is in the reverse

direction 16 MDBS Architecture with a GCS

S,

Multi - DBMS Architectures contd..

This is an integrated database system formed by a collection of two or more
autonomous database systems and are expressed through six levels of schemas:

1. Multi-database View Level: Depicts multiple user views comprising of subsets of
the integrated distributed database.

2. Multi-database Conceptual Level: Depicts integrated multi-database that
comprises of global logical multi-database structure definitions.

3. Multi-database Internal Level: Depicts the data distribution across different sites
and multi-database to local data mapping.

4. Local database View Level: Depicts public view of local data.
5. Local database Conceptual Level: Depicts local data organization at each site.
6. Local database Internal Level: Depicts physical data organization at each site.

Multi - DBMS Architectures

contd..

There are two design alternatives for multi-DBMS:

1. Model with multi-database conceptual level.

2. Model without multi-database conceptual level.

Model with Multi-database Conceptual Level

Multi-database
View 1

Local
View 11

Multi-database
View N

Multi-database Conceptual Schema

Local DB
Conceptual
Schema 1

Local
View 1P

Local DB
Internal
Schema 1

Multi-database
Internal Schema

Local DB
Conceptua
Schema M

Local DB
Internal
Schema M

Model Without Multi-database Conceptual Level

Multi-database

Multi-database

Local
View M1

Local
View MQ

View 1 View 2
Local
View 11
Local DB
Conceptual
Schema 1
Local DB
Internal
Local Schema 1
View 1P

Multi-database

View N
Local
View M1
Local DB
Conceptual
Schema M
Local DB
Internal
Schema M Local
View MQ

Conceptual Schema Definition

RELATION EMP [

KEY = {ENO}

ATTRIBUTES = {
ENO : CHARACTER(9)
ENAME : CHARACTER(15)
TITLE : CHARACTER(10)

}

]
RELATION PAY [

KEY = {TITLE)}
ATTRIBUTES = {
TITLE : CHARACTER(10)

SAL : NUMERIC(6)

Internal Schema Definition

RELATION EMP [

KEY = {ENO}

ATTRIBUTES = {
ENO : CHARACTER(9)
ENAME : CHARACTER(15)
TITLE : CHARACTER(10)

}

INTERNAL_REL EMPL [
INDEX ON E# CALL EMINX

FIELD = {
HEADER : BYTE(1)
E# : BYTE(9)
ENAME : BYTE(15)
TIT : BYTE(10)

External View Definition — Example 1

CREATE VIEW BUDGET(PNAME, BUD)
AS SELECT PNAME, BUDGET
FROM PROJ

Mediator Architecture for MDBMS

* MDBS provides a layer of software that runs on top of
these individual DBMSs (mediator) and provides users User System
the facilities of accessing various databases. requests T responses

* The multi-DBMS layer may run on multiple sites or
there may be central site where those services are

offered. /’
* Mediator level implements the GCS for handling user Mediator [€—] Mediator

queries. Mediators typically operate using a common

data model and interface language. / / \

Mediator Mediator

* To deal with potential heterogeneities, wrappers are
implemented whose task is to provide a mapping Yirapper rapper rapper
between a source DBMSs view and the mediators’ i i f \‘
view. For example, if source DBMS is relational, but the | pgus pems | ... | DpBms DBMS

mediator implementations are object-oriented, the

required mappings are established by the wrappers. é é é é

Data Fragmentation, Replication & Distribution Issues

* Two basic alternatives for placing the data: partitioned (or non-replicated) and
replicated.

* In partitioned scheme the database is divided into a number of disjoint
partitions each of which is placed at a different site.

* Replicated designs can be either fully replicated (also called fully duplicated)
where the entire database is stored at each site, or partially replicated (or
partially duplicated) where each partition of the database is stored at more
than one site, but not at all the sites.

Distributed Directory Management

A directory contains information (such as descriptions and locations) about data
items in the database. A directory may be global to the entire DDBMS or local to
each site; it can be centralized at one site or distributed over several sites; i.e
there can be a single copy or multiple copies.

Directory Concept in DDBMS

The distributed database schema information is needed during distributed query
optimization. The schema information is stored as meta data in a data
dictionary/directory, In the case of DDBMS, the schema definition is done both

at the global level (i.e. GCS) and at the local sites (i.e. LCS). Hence, there are two
types of directories:

(i) a global directory/dictionary (GD) that describes the database schema for
the end users and it permits mapping between external schemas and GCS.

(i) the local directory/dictionary (LD), that describes the local mappings from
GCS and also the local schema at each site.

As the directory is itself a database containing metadata about the actual data,
so DDB design concept also applies to the directory management.

» Hence, a directory may be either global or local to each site. In other words,
there might be a single directory containing information about all the

database, or a number of directories, each containing information stored at a
particular site.

Directory Concept in DDBMS

* In case of global directory, it may be maintained centrally at one site, or by
distributing it over a number of sites.

* Keeping the directory at one site might increase the load at that site i.e
bottleneck.

* Distributing it over a number of sites, on the other hand, increases the
complexity of managing such directories.

* Also, there may be a single copy of the directory or multiple copies in different
sites.

* Multiple copies would provide more reliability, in accessing the directory.

* On the other hand, keeping the directory up to date would be considerably
more difficult, since multiple copies would need to be updated.

* Therefore, the choice should depend on the environment in which the system
operates and should be made by balancing all these factors.

